
ginga Documentation
Release 3.3.0

Ginga Maintainers

Feb 16, 2022

CONTENTS

I About Ginga 1

II Copyright and License 5

III Requirements and Supported Platforms 9

IV Getting the Source 13

V Building and Installation 17

1 Installation 21

VI Documentation 27

2 What’s New 29

3 Quick Reference 43

4 User’s Manual 51

5 Developer’s Manual 161

6 Optimizing Performance 211

7 FAQs 213

8 Reference/API 217

i

VII Bug Reports 295

VIII Developer Info 299

IX Etymology 303

X Pronunciation 307

Python Module Index 311

Index 313

ii

Part I

About Ginga

1

ginga Documentation, Release 3.3.0

Ginga is a toolkit designed for building viewers for scientific image data in Python, visualizing 2D pixel data in NumPy
arrays. It can view astronomical data such as contained in files based on the FITS (Flexible Image Transport System)
file format. It is written and is maintained by software engineers at the National Astronomical Observatory of Japan,
the Space Telescope Science Institute, and other contributing entities.

The Ginga toolkit centers around an image display class which supports zooming and panning, color and intensity
mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In
addition to this widget, a general purpose “reference” FITS viewer is provided, based on a plugin framework.

A fairly complete set of “standard” plugins are provided for features that we expect from a modern FITS viewer: panning
and zooming windows, star catalog access, cuts, star pick/FWHM, thumbnails, etc.

3

http://www.numpy.org/
https://en.wikipedia.org/wiki/FITS
https://en.wikipedia.org/wiki/Full_width_at_half_maximum

ginga Documentation, Release 3.3.0

4

Part II

Copyright and License

5

ginga Documentation, Release 3.3.0

Copyright (c) 2011-2022 Ginga Maintainers. All rights reserved.

Ginga is distributed under an open-source BSD licence. Please see the file LICENSE.txt in the top-level directory for
details.

7

ginga Documentation, Release 3.3.0

8

Part III

Requirements and Supported Platforms

9

ginga Documentation, Release 3.3.0

Because Ginga is written in pure Python, it can run on any platform that has the required Python modules and has a
supported widget set. The basic Ginga display class supports the Qt (4 and 5), PySide, Gtk (3), Tk widget sets natively
as well as any Matplotlib Figure, and HTML5 canvases in a web browser. The full reference viewer supports Qt and
Gtk variants. Ginga can also be used in Jupyter notebooks.

11

https://en.wikipedia.org/wiki/Qt_(software)
https://wiki.qt.io/PySide
https://www.gtk.org/
http://wiki.tcl.tk/487
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

ginga Documentation, Release 3.3.0

12

Part IV

Getting the Source

13

ginga Documentation, Release 3.3.0

Clone from Github:

git clone https://github.com/ejeschke/ginga.git

To get a ZIP file or tarball instead, see the links on About Ginga.

15

http://ejeschke.github.io/ginga/

ginga Documentation, Release 3.3.0

16

Part V

Building and Installation

17

ginga Documentation, Release 3.3.0

Download and install from pip:

pip install ginga

Or conda:

conda install ginga -c conda-forge

The reference viewer can then be run using the command ginga.

For detailed instructions, see:

19

ginga Documentation, Release 3.3.0

20

CHAPTER

ONE

INSTALLATION

1.1 Dependencies

Ginga is written entirely in Python, and only uses supporting Python packages. There is nothing to compile (unless
you need to compile one of the supporting packages).

In recent Linux, Mac, and Windows versions, all of the packages are available in binary (installable) form. It should
not be necessary to compile anything, but as always, your mileage may vary.

1.1.1 REQUIRED

• python (v. 3.7 or higher)

• setuptools-scm

• numpy (v. 1.14 or higher)

• astropy

Strongly recommended, because some features will not be available without it:

• scipy

• pillow

• opencv-python (also distributed as opencv or python-opencv, depending on where you get it from)

• piexif

• beautifulsoup4

• docutils (to display help for plugins)

For opening FITS files you will need one of the following packages:

• astropy

• fitsio

For WCS resolution you will need one of the following packages:

• astropy

• kapteyn

• astLib

• starlink

21

https://fits.gsfc.nasa.gov/
https://fits.gsfc.nasa.gov/fits_wcs.html

ginga Documentation, Release 3.3.0

1.1.2 BACKENDS (one or more)

Ginga can draw its output to a number of different back ends. Depending on which GUI toolkit you prefer (and what
you want to do), you will need at least one of the following:

• QtPy (PyQt4 or PyQt5)

• PySide (Qt4/Qt5 alternative)

• pygobject (gi) AND pycairo (GTK 3)

• tkinter

• matplotlib

• tornado

• aggdraw

• Pillow (PIL fork)

1.1.3 RECOMMENDED

Certain plugins in the reference viewer (or features of those plugins) will not work without the following packages:

• matplotlib (required by: Pick, Cuts, Histogram, LineProfile)

• scipy (required by: Pick, some built-in auto cuts algorithms used when you load an image)

• astroquery (required by Catalogs)

To save a movie:

• mencoder (command line tool required by: Cuts)

Helpful, but not necessary (may optimize or speed up certain operations):

• opencv-python (speeds up rotation, mosaicing and some transformations)

• pyopengl + pycairo (for using OpenGL features; very useful for 4K or larger monitors)

• filemagic (aids in identifying files when opening them)

• Pillow (useful for various RGB file manipulations)

1.2 Notes on Supported Widget Sets

In the discussion below, we differentiate between the Ginga viewing widget, such as used in the examples/*/
example*.py programs and the full reference viewer, which includes many plugins (ginga).

Note: For the full reference viewer, Mac and Windows users should probably install the Qt version, unless you are the
tinkering sort. Linux can use either Qt or GTK fine.

22 Chapter 1. Installation

https://docs.python.org/3/library/tk.html
https://github.com/pytroll/aggdraw

ginga Documentation, Release 3.3.0

1.2.1 Qt/PySide

Ginga can use either PyQt or PySide, version 4 or 5. It will auto-detect which one is installed, using the qtpy compat-
ibility package. There is support for both the basic widget and the full reference viewer.

Note: If you have both installed and you want to use a specific one then set the environment variable QT_API to either
“pyqt” or “pyside”. This is the same procedure as for Matplotlib.

1.2.2 GTK

Ginga can use GTK 3 (with gi). (If you have an older version of pycairo package, you may need to install a newer
version from pycairo).

1.2.3 Tk

Ginga’s Tk support is limited to the viewing widget itself. For overplotting (graphics) support, you will also need one
of:

• Pillow

• opencv-python

• aggdraw

1.2.4 Matplotlib

Ginga can render directly into a Matplotlib figure. Support is limited to the viewing widget itself. Any of the backends
that Matplotlib supports is usable. Performance is not as good as to one of the “native” backends listed above, but oh,
the overplot options!

1.2.5 HTML5 web browser

Ginga can render into an HTML5 canvas via a web server. Support is limited to the viewing widget itself. See the
notes in examples/pg/example2_pg.py. Tested browsers include Chromium (Chrome), Firefox, and Safari.

1.3 Basic Installation

You can download and install via pip by choosing the command that best suits your needs (full selection is defined in
setup configuration file):

pip install ginga # The most basic installation

pip install ginga[recommended,qt5] # Qt5

pip install ginga[recommended,gtk3] # GTK 3

Or via conda:

1.3. Basic Installation 23

https://github.com/ejeschke/ginga/blob/master/setup.cfg

ginga Documentation, Release 3.3.0

conda install ginga -c conda-forge

The reference viewer can then be run using the command ginga.

1.4 Installation from Source

1. Clone from Github:

git clone https://github.com/ejeschke/ginga.git

Or see links on this page to get a ZIP file or tarball.

2. Unpack, go into the top level directory, and run:

pip install -e .

1.5 Platform Specific Instructions

1.5.1 Linux (Debian/Ubuntu)

If you are on a relatively recent version of Debian or Ubuntu, something like the following will work:

apt install python3-ginga

If you are using another distribution of Linux, we recommend to install via Anaconda or Miniconda as described below.

1.5.2 Mac/Windows/Linux (others)

Anaconda

For Mac/Windows or other Linux users, we recommend installing the Anaconda distribution (or Miniconda). This
distribution already includes all of the necessary packages to run Ginga.

After installing Anaconda, open the Anaconda Prompt and follow instructions under Basic Installation via conda.

1.6 Running tests

1. Install the following packages:

$ pip install -e .[test]

2. Run the tests using pytest:

$ pytest

24 Chapter 1. Installation

http://ejeschke.github.io/ginga/
http://continuum.io/downloads

ginga Documentation, Release 3.3.0

1.7 Building documentation

1. Install the following packages:

$ pip install -e .[docs]

2. Build the documentation using make:

$ cd doc
$ make html

1.7. Building documentation 25

ginga Documentation, Release 3.3.0

26 Chapter 1. Installation

Part VI

Documentation

27

CHAPTER

TWO

WHAT’S NEW

2.1 Ver 3.3.0 (2022-02-16)

• Fixed an issue with image rotation when OpenCv is installed

• Removed support for OpenCL

• Fixed Crosshair plugin to update the plot when image changes in channel

• Fixed an issue where a thumbnail could be generated even if the channel was configured not to generate thumbs

• Fixed an issue where wcs_world2pix() was called instead of all_world2pix() if wcs_astropy was used. This may
have affected graphic overlays plotted in ra/dec instead of pixels.

• Closing the reference viewer now stops all plugins first

• Fix to RC plugin for better error handling if another process is using the port

• Fixed a bug where using the fitsio loader the primary header was not set correctly in some instances

• Additions to the “pg” backend to add functionality already in the Qt and Gtk backends

• Fixed a bug with writing FITS files when using fitsio wrapper

• Fixed a bug where creating a new workspace did not set the correct workspace type that was selected in the drop
down menu

• Updated pg widgets web backend due to changes to Tornado asyncio handling

• Changes to ‘histogram’ and ‘stddev’ autocuts algorithms:

– choice of sampling by grid now; useful for mosaics and collages

– for previous parameter of usecrop=True, use sample=crop

• Moved loading of FITS HDUs from AstroImage to io_fits module, encapsulating the details of this file format
into the module responsible for loading those files:

– added loading of FITS tables via the fitsio package in io_fits

– TableView can now view tables loaded with either astropy or fitsio

– inherit_primary_header in general.cfg now defaults to True and actually controls the behavior of always
saving the primary header if set to False

• Fixed a rounding bug in displaying sexagesimal formatted coordinates:

– deprecated ginga.util.wcs.{raDegToString,decDegToString}

– use ginga.util.wcs.{ra_deg_to_str,dec_deg_to_str} instead

• Fixed an issue where the Catalogs plugin would not start correctly if astroquery was not installed

29

ginga Documentation, Release 3.3.0

• The keywords save_primary_header and inherit_primary_header in the AstroImage constructor are
deprecated. Use these same keywords in AstroImage.load_hdu() or AstroImage.load_file() methods
instead. Several other methods in AstroImage are deprecated as well; they were previously pending deprecation.

• Fixed an issue where image might not be redrawn properly if scale or pan is set directly via a viewer’s settings
object (not the usual case)

2.2 Ver 3.2.0 (2021-06-07)

• Minimum supported Python version is now 3.7

• Fixed some numpy deprecation warnings with numpy 1.19.0

• Canvas shapes can now be copied

• Added an option to make a copy of existing shape in Drawing plugin

• Added an option to make a copy of existing cut in Cuts plugin

• Added new iqcalc_astropy module to handle FWHM fitting and source finding using astropy and photutils

• Added new calc_fwhm_lib configuration item to let Pick switch between iqcalc and iqcalc_astropy

• Fixed a bug where certain plots were not cleared in Pick plugin

• Removed support for matplotlib versions < 2.1

• Added bicubic and bilinear interpolation methods to OpenGL backend

• Fixed a bug where the FWHM labels in the plot didn’t match report values in the Pick plugin

• Fixed a bug in gtk/cairo backend where paths were not drawn correctly

• Included a couple of additional bundled fonts to improve legibility of small text

• Fixed a bug in PixTable that reversed pixel indices on display

• Added box sum and median results to PixTable; also improved statistics display

• Fixed an issue for the Tk Ginga widget if PIL.ImageTk was not installed

• Changed splitter widget so that the “thumbs” have a visual indicator

• Fixed an issue with cursor warp in free panning with Gtk3 backend

• Fixed an issue where the cursor was not changed from the default

• Fixed Pick plugin to autozoom the pick and contour images

• Fixed an issue where Thumbs plugin might not show initial thumb(s) when main window is enlarged to certain
sizes

• Added “orientation” setting to orientable plugins

• Enhancements to Histogram plugin: ability to click in plot to set low and high cuts levels, scroll plot to expand
or contract cuts width

• Crosshair plugin enhanced to have fast X/Y cuts plot feature; cuts plot removed from Pick plugin

• Fixed an issue where the Pick plugin would not start due to a change to matplotlib canvas initialization

• Updates to Catalogs plugin:

– new astronomical object lookup section for SIMBAD or NED

30 Chapter 2. What’s New

ginga Documentation, Release 3.3.0

– new ability to specify some astroquery catalog and image sources in the plugins_Catalogs.cfg config-
uration file

– API not compatible with previous releases, including configuration via `ginga_config.py`

2.3 Ver 3.1.0 (2020-07-20)

• Zoom and Pan plugins refactored. Now shows graphical overlays.

• Improved performance of rendering when flipping, swapping axes or rotating viewer.

• Fixed a bug where the display was not redrawn if an ICC profile was changed

• Fixed bugs relating to drawing XRange, YRange and Rectangle objects on rotated canvas

• Fixed a bug with fit image to window (zoom_fit) which was off by half a pixel

• Fixed an issue where an error message appears in the log if the scale is so small the image is invisible

• Fixed an issue where the readout under the cursor for value is reported for an empty row to the left and column
below of pixels

• Removed dependence on astropy-helpers submodule.

• Fixed an issue where limits were not reset correctly if image being viewed is modified in place (and data array
changes size)

• Fixed an issue with Mosaic plugin where images with a PC matrix were not always oriented correctly

• New Collage plugin offers an efficient alternative way to view mosaics

• Fix for a bug where using Zoom and PixTable at the same time can cause wrong results to be displayed in PixTable

• New ability to specify alternative Ginga home directories, with custom layouts and plugin configurations
(–basedir option)

• Fix for a bug that caused a crash when closing the Help window with Qt/PySide backend

2.4 Ver 3.0.0 (2019-09-20)

• Dropped Python 2 support. Ginga now requires Python 3.5 or later.

• Fixed an issue with some RGB images being viewed flipped

• Improved accuracy of Qt-based timers

• Pick plugin enhanced with option to center on found object; also default shape changed to a box rather than a
rectangle

• Added support for ASDF and GWCS.

• Fixed drag-and-drop functionality in FBrowser plugin on Windows.

• Enabled HDU sorting via config file in MultiDim.

• Fixed a bug where display would get corrupted when adjusting interactive cuts or contrast on rotated image

• Improved smoothness and updates of Zoom plugin image

• Improved smoothness and updates when rotating or shifting color map

• Fixed broken banner

2.3. Ver 3.1.0 (2020-07-20) 31

ginga Documentation, Release 3.3.0

• Improved pip installation commands for different backends.

• Fixed a bug where identically named HDUs could not be loaded by MultiDim

• Fixed a bug where compressed HDUs could not be loaded by MultiDim

• Plugins with splitter type panels now remember their sizes when closed

• LineProfile plugin’s default Y-axis label is now “Signal”, to be more scientifically accurate.

• Simplified plugins Colorbar, Contents, Cursor, Errors, Header, Info, Log, Pan, and Thumbs plugins. Made all of
these restartable. Subclasses of these plugins may require refactoring in a couple of cases.

• Selecting item in FBrowser now populates its text box properly.

• Support opening all extensions of given extension name from a FITS file (e.g., filename.fits[SCI,*]) from
Ginga command line or FBrowser.

• New Downloads plugin for monitoring/managing URI downloads

• Supports PySide2 (alternative Qt5 backend)

• Added statistics line to Histogram plugin

• Removed support for gtk2, since it is not supported for Python 3

• new styles added for Point canvas type: circle, square, diamond, hexagon, uptriangle, downtriangle

• New file opener framework

• Text objects can be resized and rotated in edit mode on the canvas

• Added ellipse and box annulus types as Annulus2R canvas object

• Supports plotting DS9 regions via 2-way conversion between Ginga canvas types and Astropy regions

2.5 Ver 2.7.2 (2018-11-05)

• Fix for linewidth attribute in shapes for AGG backend

• Fix for ellipse rotation in OpenCv backend

• Better text rendering for OpenCv backend (loadable fonts)

• enhancements to the Ruler plugin for reference viewer

• supports quick loading from astropy NDData (or subclassed) objects

• Support for scaling fonts on high-dpi displays

• Fixed a bug where adjusting autocuts parameters in Preferences would crash the Qt backend

• Fixed a bug that caused windows to disappear when changing workspace to MDI mode under Gtk3 backend

• Fixed a bug where local plugins were not properly closed when a channel is deleted

• Fixed a bug in which the ColorMapPlugin canvas was not scaled to the correct size

• Improvements to synchronous refresh feature to reduce jitter and increase frame rate

• Fix for navigating certain data cubes with MutltiDim plugin

• Added new percentage transform and coordinate mapper type (allow placement of objects as a percentage of the
window size)

• Updates to Compass canvas type and Pan plugin

32 Chapter 2. What’s New

ginga Documentation, Release 3.3.0

• Documentation improvements for writing plugins

2.6 Ver 2.7.1 (2018-07-09)

• Fix for image rendering bug which shows last row and column of image being drawn twice

• Added option to “Compass” draw type to be in pixels (X/Y) or wcs (N/E)

• Changed Pan plugin to attempt to draw both kinds of compasses

• Log plugin enhanced to show lines logged before it was opened

• Info plugin adds convenience controls for “Follow New” and “Raise New”

• WCSMatch plugin enhanced to offer fine grained control over sync

• fixed an issue in Debian build that caused long start up times

• User can dynamically add scrollbars to channel viewers in Preferences

• Made Gtk backend default to ‘gtk3’ - “-t gtk” now invokes gtk3 instead of gtk2 - choose “-t gtk2” if you want
the gtk2 back end

• Fixed a bug with opening wildcard-type filespec from the command line

• Fixed an issue in Thumbs plugin with opening FITS tables from the command line

• Fixes for some keyboard focus (Gtk) and unintentional channel changes (Qt) when viewer is in MDI mode

• IRAF plugin moved to experimental folder

• Allow setting of initial channel list, local, global and disabled plugins from general configuration file

• Fix for a bug when using OpenCv acceleration on dtype(‘>f8’) arrays

• Fixed a bug where colormap scale markers were sometimes not spaced wide enough

• Workaround for failed PDF build in RTD documentation

2.7 Ver 2.7.0 (2018-02-02)

• Fix for gtk 4.0 (use “gtk3” backend, it works for 4.0)

• Fix for broken polygon containment test

• Addition of configurable zoom handlers for pan gestures

• Fix for some broken tests under python 2.7

• Update to mode handling via keyboard shortcuts

– addition of a new “meta” mode used primarily for mode switching

– most modes now initiated from meta mode, which frees up keys for other uses

– see Ginga quick reference for details on how the new bindings work

• Efficiency update for Thumbs plugin when many thumbs are present

• Default for the save_layout option is now True, so the reference viewer will write out its layout state on exit and
restore it on startup. See documentation in the “customization” section of the manual.

• Plugins can now be organized by category and these categories are used to construct a hierarchical Operations
menu

2.6. Ver 2.7.1 (2018-07-09) 33

ginga Documentation, Release 3.3.0

• Zoom and Header plugins are now not started by default

• Fix for “sortable” checkbox behavior on Header plugin

• Default keyboard mode type is now ‘locked’ (prev ‘oneshot’)

• Fixes for missing CSS file in installation script

• Less confusing behavior for workspace and toolbar arrow buttons

2.8 Ver 2.6.6 (2017-11-02)

• Fix for broken sorting in Contents plugin in gtk backends

• Fix for resize bug in switching in and out of grid view in gtk backends

• Updated to have efficient support for gtk3

– please install compatible pycairo from github.com/pygobject/pycairo if you get a “Not implemented yet”
exception bubbling up from a method called cairo.ImageSurface.create_for_data()

• Addition of a “Quick Mode” to the Pick plugin–see documentation

• More consistent font handing between widgets and Ginga canvases

• Bug fix for importing some types of matplotlib color maps

• Add antialiasing for Qt back end

• Bug fixes and enhancements for Qt gestures - holding shift with pinch now keeps position under cursor

• New Jupyter notebooks back end based on ipywidgets - requirements: $ pip install ipyevents - see
examples/jupyter-notebook/

• Fixes to various reference viewer plugins

2.9 Ver 2.6.5 (2017-07-31)

• Coordinate transforms refactored for speed and code clarity

• Some canvas shapes refactored for better code reuse

• Allow max and min scale limits to be disabled (by None)

• Fixed a bug that prevented the reference viewer from resizing correctly with Qt back end

• Refactored WCS wrapper module for code clarity

• Set minimum astropy version requirement to 1.X

• Fixed a bug in NAXIS selection GUI (MultiDim plugin)

• Fixed MDI window resizing with Gtk back ends

• Fixed an error where zoom 100% button did not correctly zoom to 1:1 scale

• Several fixes for astropy 2.0 compatibility

• Fixed a bug in the FBrowser plugin when channel displaying a table and attempting to load a new file

• Fixed a bug when setting the pan position manually by wcs coordinates

• Updates for changes in PIL.ImageCms module

34 Chapter 2. What’s New

ginga Documentation, Release 3.3.0

• Fix for window corruption on certain expose events

• New default bindings for touch pads and differentiation from wheel zoom

2.10 Ver 2.6.4 (2017-06-07)

• Added new ScreenShot plugin to take PNG/JPEG snaps of the viewer window

• Enhancements to the Pick plugin

– Added ability to make shapes besides rectangles for enclosing pick area. Masks out unwanted pixels.
Choose the shape in the Settings tab.

– Changed behavior of pick log to only write the log when the user clicks the save button.

– Changed the name of the save button to “Save as FITS table” to make it clear what is being written.

– If “Show candidates” is selected in Settings, then ALL of the candidates are saved to the log.

– Added documentation to the manual

– Bug fix for error when changing radius

• Improvements to layout of Operations menu (plugin categories)

• Colorbar scale now placed below the color wedge and is more legible

• Bug fixes for LineProfile plugin

• Slit function for Cuts plugin can be enabled from GUI

• Bug fixes for Slit function

• Info plugin can now control new image cut/zoom/center settings

• Fixed an issue with the MultiDim plugin that could result in a hang with some back ends

• New canvas type for displaying WCS grid overlay and new WCSAxes plugin that uses it

• Bug fixes to scrolling via scrollbars and vert/horiz percentages

• Enhancements to the LineProfile plugin

– several new shapes besides the standard point

– plot multiple lines

2.11 Ver 2.6.3 (2017-03-30)

• Fix for issue that stops ginga startup when loading externally distributed plugins that have errors

• Fix for an issue loading plugins from the command line when they are nested in a package

• Added bindings for moving +/- pixel delta in X or Y and centering on the pixel

• Fixes for some key mappings for tk, matplotlib and HTML5 canvas backends

• Fixes for IRAF plugin under python 3

• Fix for a bug using remote control (RC) plugin from python2 client to python 3 ginga

• Documentation updates

2.10. Ver 2.6.4 (2017-06-07) 35

ginga Documentation, Release 3.3.0

2.12 Ver 2.6.2 (2017-02-16)

• Added some colormaps from ds9 that don’t have equivalents in Ginga or matplotlib

• Fix for recognizing CompImage HDU type when using astropy.io.fits

• Add new experimental OpenGL back end

• Fixes for Tk back end on python 3

• You can now write separately distributed and installable plugins for the reference viewer that Ginga will find and
load on startup

• Added –sep option to load command line files into separate channels

• New help screen feature available for plugins

• Lots of updates to documentation

• Fixed a stability issue with drag and dropping large number of files under Linux

• Fixes for python3 and several example programs

• Fix for interactive rotation bug under matplotlib back end

2.13 Ver 2.6.1 (2016-12-22)

• Added a working MDI workspace for gtk2/gtk3.

• Added scrollbar frames. See examples/qt/example1_qt.py for standalone widget. Can be added to reference
viewer by putting ‘scrollbars = “on”’ in your channel_Image.cfg preferences.

• Reorganized reference viewer files under “rv” folder.

• Improved Pick plugin: nicer contour plot, pick log uses table widget, pick log saved as a FITS table HDU

• Pick and Zoom plugins can now use a specific color map, rather than always using the same one as the channel
window

• gtk3 reference viewer can now be resized smaller than the original layout (gtk2 still cannot)

• added ability to save the reference viewer size, layout and position on screen

• gtk MDI windows now remember their size and location when toggling workspace types

• Fixes for problems with pinch and scroll gestures with Qt5 backend

• Fixed a bug where scale changes between X and Y axes unexpectedly at extreme zoom levels

• Fixed a bug where cursor could get stuck on a pan cursor

• Added ability to define a cursor for any mode

• Added documented virtual methods to ImageView base class

• Added a workaround for a bug in early versions of Qt5 where excessive mouse motion events accumulate in the
event queue

36 Chapter 2. What’s New

ginga Documentation, Release 3.3.0

2.14 Ver 2.6.0 (2016-11-16)

With release 2.6.0 we are moving to a new versioning scheme that makes use of github tagged releases and a “dev”
versioning scheme for updates between releases.

This release includes many bugfixes and improvements, new canvas types (XRange and YRange), a Command plugin,
WCSMatch plugin, dynamically configurable workspaces, OpenCv acceleration, an HTML5 backend and much much
more.

2.15 Ver 2.2.20160505170200

Ginga has merged the astropy-helpers template. This should make it more compatible management-wise with other
astropy-affiliated packages.

2.16 Ver 2.2.20150203025858

Ginga drawing canvas objects now can specify points and radii in world coordinates degrees and sexigesimal notation.

• default is still data coordinates

• can play with this from Drawing plugin in reference viewer

2.17 Ver 2.1.20141203011503

Major updates to the drawing features of ginga:

• new canvas types including ellipses, boxes, triangles, paths, images

• objects are editable: press ‘b’ to go into edit mode to select and manipulate objects graphically (NOTE: ‘b’
binding is considered experimental for now–editing interface is still evolving)

• editing: scale, rotate, move; change: fill, alpha transparency, etc.

• editing features available in all versions of the widget

• updated Drawing plugin of reference viewer to make use of all this

2.18 Ver 2.0.20140905210415

Updates to the core display and bindings classes:

• improvements to interactive rotation command–now resume rotation from current value and direction is relative
to horizontal motion of mouse

• most keyboard modes are now locking and not oneshot (press to turn on, press again (or hit escape) to turn off

• additional mouse button functionality in modes (see quick reference)

• some changes to default keyboard bindings (see quick reference)

• changes to auto cuts parameters always result in a new autocut being done (instead of having to explicity perform
the autocut)–users seem to expect this

• autocenter preference changed from True/False to on/override/off

2.14. Ver 2.6.0 (2016-11-16) 37

ginga Documentation, Release 3.3.0

Reference viewer only: new global plugin “Toolbar” provides GUI buttons for many operations that previously had
only keyboard bindings

2.19 Ver 2.0.20140811184717

Codebase has been refactored to work with python3 via the “six” module. Tests can now be run with py.test as well as
nosetest.

2.20 Ver 2.0.20140626204441

Support has been added for image overlays. It’s now possible to overlay RGB images on top of the canvas. The images
scale, transform and rotate wrt the canvas.

2.21 Ver 2.0.20140520035237

Auto cut levels algorithms have been updated. “zscale” has been reinforced by using the module from the “numdisplay”
package, which does a fair sight closer to IRAF than the previous one Ginga was using. Also, the algorithm “median”
(median filtering) makes a comeback. It’s now fast enough to include and produces more usable results.

2.22 Ver 2.0.20140417032430

New interactive command to orient the image by WCS to North=Up. The default binding to ‘o’ creates left-handed
orientation (‘O’ for right-handed). Added a command to rotate the image in 90 deg increments. Default binding to ‘e’
rotates by 90 deg (‘E’ for -90 deg).

2.23 Ver 2.0.20140412025038

Major update for scale (mapping) algorithms

The scale mapping algorithms (for mapping data values during rendering) havebeen completely refactored. They are
now separated from the RGBMap class and are pluggable. Furthermore I have redone them modeled after the ds9
algorithms.

There are now eight algorithms available: linear, log, power, sqrt, squared, asinh, sinh, histeq. You can choose the
mapping from the Preferences plugin or cycle through them using the binding to the ‘s’ key (Use ‘S’ to reset to linear).
There is also a mouse wheel mapping than can be assigned to this function if you customize your bindings. It is not
enabled by default.

The Preferences plugin has been updated to make the function a little clearer, since there was some confusion also with
the intensity map feature that is also part of the final color mapping process.

38 Chapter 2. What’s New

ginga Documentation, Release 3.3.0

2.24 Ver 2.0.20140114070809

• The SAMP plugin has been updated to work with the new astropy.vo.samp module.

• The Catalogs plugin has been updated to allow the user to define the radius of the conesearch or image search by
drawing a circle (as well as the previous option–a rectangle).

2.25 Ver 2.0.20131218034517

The user interface mapping just got a bit easier to use. Ginga now provides a way to do most UI remapping just by
placing a simple config file in your ~/.ginga directory. An example for ds9 users is in the new “examples” folder.

Many simple examples were moved out of “scripts” and stored under subdirectories (by GUI toolkit) in “examples”.

2.26 Ver 2.0.20131201230846

Ginga gets trackpad gestures! The Qt rendering class gets support for pinch and pan gestures:

• The pinch/rotate gesture works as expected on a Mac trackpad

• The pan gesture is not a two-finger pan but a “non-standard”, Qt-specific one-finger pan. These are experimental
for now, but are enabled by default in this release.

Also in this release there has been a lot of updates to the documentation. The developer and internals sections in
particular have a lot of new material.

2.27 Ver 2.0.20131030190529

The great renaming

I really dislike it when developers do this, so it pains me to do it now, but I have performed a mass renaming of classes.
FitsImage ended up being the View in the MVC way of doing things, yet it shared the same naming style as the model
classes AstroImage and PythonImage. This would have been the source of endless confusion to developers down the
road. Also, PythonImage needed to get renamed to something more akin to what it actually represents.

So the renaming went like this:

• FitsImage -> ImageView

• FitsImage{XYZ} -> ImageView{XYZ}

• PythonImage -> RGBImage

So we have:

• M: BaseImage, AstroImage, RGBImage

• V: ImageView{XYZ}

• C: Bindings, BindMap

I did this in the brand new 2.0 version so at least devs have a heads up that things will not be backward compatible.

And I apologize in advance for any renaming and support issues this may cause for you. Fire up your editor of choice
and do a query/replace of “FitsImage” with “ImageView” and you should be good to go.

2.24. Ver 2.0.20140114070809 39

ginga Documentation, Release 3.3.0

2.28 Ver 1.5-20131022230350

Ginga gets a Matplotlib backend!

Ginga can now render to any Matplotlib FigureCanvas. The performance using this backend is not as fast as the others,
but it is acceptable and opens up huge opportunities for overplotting.

See scripts/example{1,2,3,4,5}_mpl.py

Also merges in bug fixes for recent changes to astropy, and support for other python WCS packages such as kapteyn
and astLib.

2.29 Ver 1.5-20130923184124

2.29.1 Efficiency improvements

Efforts to improve speed of entire rendering pipeline and widget specific redrawing

• Decent improvements, Ginga can now render HD video (no sound) at 30 FPS on older hardware (see
scripts/example1_video.py). This translates to a slightly speedier feel overall for many operations viewing regular
scientific files.

• Fixed a bug that gave an error message of Callback.py:83 (make_callback) | Error making callback ‘field-info’:
‘Readout’ object has no attribute ‘fitsimage’

• Version bump

2.30 Ver 1.4.20130718005402

2.30.1 New Agg backend

There is now an Agg rendering version of the ImageView object.

• uses the python “aggdraw” module for drawing; get it here –> https://github.com/ejeschke/aggdraw

• this will make it easy to support all kinds of surfaces because the graphics drawing code does not have to be
replicated for each toolkit

• see example code in /scripts/example1_agg_gtk.py

• currently not needed for Gtk, Qt versions of the object

2.30.2 New Tk backend

There is now a Tk rendering version of the ImageView object.

• see ginga.tkw.ImageViewTk

• renders on a Tk canvas

• see example code in /scripts/example{1,2}_tk.py

• you will need the aggdraw module (see above) to use it

40 Chapter 2. What’s New

https://github.com/ejeschke/aggdraw

ginga Documentation, Release 3.3.0

2.30.3 AutoCuts

• the ginga.AutoCuts module has been refactored into individual classes for each algorithm

• The Preferences plugin for ginga now exposes all of the parameters used for each cut levels algorithm and
will save them

2.30.4 Etc

• additions to the manual (still incomplete, but coming along)

• lots of docstrings for methods added (sphinx API doc coming)

• many colors added to the color drawing example programs

• WhatsNew.txt file added

2.30. Ver 1.4.20130718005402 41

ginga Documentation, Release 3.3.0

42 Chapter 2. What’s New

CHAPTER

THREE

QUICK REFERENCE

3.1 Main image window

These keyboard and mouse operations are available when the main image window has the focus.

3.1.1 Mode control commands

About modes

Certain keystrokes invoke a mode—modes are usually indicated by the mode indicator: a small black rectangle with
the mode name in one corner of the view. In a mode, there are usually some special key, cursor, and scroll bindings
that override some of the default ones.

Modes additionally have a mode type which can be set to one of the following:

• held: mode is active while the activating key is held down

• oneshot: mode is released by initiating and finishing a cursor drag or when Esc is pressed, if no cursor drag is
performed

• locked: mode is locked until the mode key is pressed again (or Esc)

• softlock: mode is locked until another mode key is pressed (or Esc)

By default, most modes are activated in “oneshot” type, unless the mode lock is toggled. The mode type is indicated
in the brackets after the mode name in the mode indicator. The following keys are important for initiating a mode:

Commmand Description
Space Enter “meta” mode. Next keystroke will trigger a particular mode.
Esc Exit any mode. Does not toggle the lock.
l Toggle the soft lock to the current mode or any future modes.
L Toggle the normal lock to the current mode or any future modes.

43

ginga Documentation, Release 3.3.0

“meta” mode

Most modes are defined so that they are invoked from a special intermediate mode called “meta”. In that case a two-key
sequence is required to enter the mode: pressing the key that invokes “meta” and then pressing the key that invokes the
desired mode. The following table shows the modes that can be triggered from meta mode.

Commmand Description
Space Exit/Enter “meta” mode.
b Enter draw mode (canvas must be enabled to draw).
q Enter pan mode.
w Enter freepan mode.
r Enter rotate mode.
t Enter contrast mode.
y Enter cmap (color map) mode.
s Enter cuts mode.
d Enter dist (distribution) mode.

Note: For modes initiated from meta mode, the locked and softlock mode types work the same way, which is slightly
different from that described above: you press the meta mode key to switch back to meta mode, from which you can
enter another mode by pressing its key. You can always press Esc in any mode (including meta mode) to exit the mode.

3.1.2 Panning and zooming commands

Commmand Description
Scroll wheel turned Zoom in or out.
Shift + scroll wheel Zoom while keeping location under the cursor.
Ctrl + scroll wheel turned Pan in direction of scroll.
Digit (1234567890) Zoom image to zoom steps 1, 2, . . . , 9, 10.
Shift + Digit Zoom image to zoom steps -1, -2, . . . , -9, -10.
Backquote (`) Zoom image to fit window and center it.
Minus, Underscore (-, _) Zoom out.
Equals, Plus (=, +) Zoom in.
Middle (scroll) button click Set pan position (under cursor).
p Set pan position (under cursor) for zooming.
Shift + left-click Set pan position for zooming.
Shift + arrow key Move pan position 1 pixel in that direction.
c Set pan position to the center of the image.
q Enter Pan mode.
w Free Freepan mode.
Ctrl + left-drag Proportional pan (press and drag left mouse button.
slash (/) Set autocenter for new images to override.
question (?) Toggle autocenter for images to on or off.
apostrophe (‘) Set autozoom for new images to override.
double quote (“) Toggle autozoom for new images to on or off.

44 Chapter 3. Quick Reference

ginga Documentation, Release 3.3.0

3.1.3 Cut levels and colormap commands

Commmand Description
a Auto cut levels.
d Enter Color Distribution (“dist”) mode. See Dist mode.
D Reset color distribution algorithm to “linear”.
s Enter Cuts mode.
t Enter Contrast mode.
T Restore the contrast (via colormap) to its original (unstretched, unshifted) state.
y Enter CMap (color map) mode.
Y Restore the color map to default (gray).
I Invert the color map.
semicolon (;) Set autocuts for new images to override.
colon (:) Toggle autocuts for new images to on or off.

3.1.4 Transform commands

Commmand Description
Left bracket ([) Toggle flip image in X.
Left brace ({) Reset to no flip of image in X.
Right bracket (]) Toggle flip image in Y.
Right brace (}) Reset to no flip image in Y.
Backslash (\) Swap X and Y axes.
Vertical bar (|) Reset to no swap of X and Y axes.
r Enter Rotate mode.
R Restore rotation to 0 degrees and additionally undo any flip/swap transformations.
period (.) Increment current rotation by 90 degrees.
comma (,) Decrement current rotation by 90 degrees.
o Orient image by transforms and rotation so that WCS indicates North=Up and East=Left.
O Orient image by transforms and rotation so that WCS indicates North=Up and East=Right.

3.1.5 Pan mode

Commmand Description
left-drag Pan proportionally to drag.
middle-click Set pan position.
right-drag Zoom in/out proportionally to L/R drag.
<Modifier> + arrow key Pan in direction of arrow key. Adding Ctrl reduces amount, adding Shift reduces more.
p Pan to position under cursor.
z Save current scale (see below for use).
backquote (`) Zoom to fit window and center.
1 Pan to cursor and zoom to saved scale level (or 1:1 if no scale level saved).
c Set pan position to the center of the image.
slash (/) Set autocenter for new images to override.
question (?) Toggle autocenter for images to on or off.
apostrophe (‘) Set autozoom for new images to override.
double quote (“) Toggle autozoom for new images to on or off.

3.1. Main image window 45

ginga Documentation, Release 3.3.0

3.1.6 Freepan mode

Commmand Description
Turn scroll wheel Zoom while keeping location under the cursor.
left-click Set pan position, zoom in a step and warp cursor to pan position (if supported on

backend).
right-click Set pan position, zoom out a step and warp cursor to pan position (if supported on

backend).
middle-drag Pans freely over entire image in proportion to cursor position versus window.
p, z, backquote, 1, c, arrow
keys

(Same as for Pan mode.)

3.1.7 Dist mode

Commmand Description
scroll Select distribution from linear, log, etc.
b, up-arrow Select prev distribution in list.
n, down-arrow Select next distribution in list.
D Reset color distribution algorithm to “linear”.

3.1.8 Cuts mode

Commmand Description
left-drag Interactive cut both low and high levels (vertical cuts low, horizontal cuts high).
Ctrl + left-drag Interactive cut low level only (horizontal drag).
Shift + left-drag Interactive cut high level only (horizontal drag).
scroll Coarse (10%) adjustment in/out.
Ctrl + scroll Fine (1%) adjustment in/out.
a, right-click Do an auto level to restore cuts.
h Set the high cut to the value under the cursor.
l Set the low cut to the value under the cursor.
S Set cuts to min/max values.
A Set cuts to 0/255 values (for 8bpp RGB images).
b, up-arrow Select prev auto cuts algorithm in list.
n, down-arrow Select next auto cuts algorithm in list.
semicolon (;) Set autocuts for new images to override.
colon (:) Toggle autocuts for new images to on or off.

46 Chapter 3. Quick Reference

ginga Documentation, Release 3.3.0

3.1.9 Contrast mode

Comm-
mand

Description

left-drag Interactive shift/stretch colormap (AKA contrast and bias). L/R controls shift, U/D controls stretch.
right-click Restore the contrast (via colormap) to its original (unstretched, unshifted) state.
T Restore the contrast (via colormap) to its original (unstretched, unshifted) state.

3.1.10 Rotate mode

Commmand Description
left-drag Drag around center of window to rotate image.
right-click Restore rotation to 0 degrees (does not reset any flip/swap transformations).
R Restore rotation to 0 degrees and additionally undo any flip/swap transformations.
Left bracket ([) Toggle flip image in X.
Left brace ({) Reset to no flip of image in X.
Right bracket (]) Toggle flip image in Y.
Right brace (}) Reset to no flip image in Y.
Backslash (\) Swap X and Y axes.
Vertical bar (|) Reset to no swap of X and Y axes.
period (.) Increment current rotation by 90 degrees.
comma (,) Decrement current rotation by 90 degrees.
o Orient image by transforms and rotation so that WCS indicates North=Up and East=Left.
O Orient image by transforms and rotation so that WCS indicates North=Up and East=Right.

3.1.11 Cmap mode

Commmand Description
scroll Select color map.
left-drag Rotate color map.
right-click Unrotate color map.
b, up-arrow Select prev color map in list.
n, down-arrow Select next color map in list.
I Toggle invert color map.
r Restore color map to unrotated, uninverted state.
Ctrl + scroll Select intensity map.
j, left-arrow Select prev intensity map in list.
k, right-arrow Select next intensity map in list.
i Restore intensity map to “ramp”.
c Toggle a color bar overlay on the image.
Y Restore the color map to default (‘gray’).

3.1. Main image window 47

ginga Documentation, Release 3.3.0

3.1.12 Plot mode

Plot mode is only valid when the viewer is used with a PlotAide object to display a graph.

Commmand Description
scroll Zoom the X axis. (Sets autoaxis_x to off, if it was on)
Ctrl + scroll Zoom the Y axis. (Sets autoaxis_y to off)
x Toggle autoaxis_x between on and off.
p Toggle autoaxis_x between pan and off.
y Toggle autoaxis_y between on and off.
v Toggle autoaxis_y between vis and off.

The graph can be flipped in X or Y and the axes swapped, using the keystroke commands found in the transform section
above (Transform commands).

To understand the role of the autoaxis_x and autoaxis_y settings, please see the chapter on plots (Plots).

3.1.13 Autozoom setting

The “autozoom” setting can be set to one of the following: “on”, “override”, “once” or “off”. This affects the behavior
of the viewer when changing to a new image (when done in the typical way) as follows:

• on: the image will be scaled to fit the window

• override: like on, except that once the zoom/scale is changed by the user manually it turns the setting to off

• once: like on, except that the setting is turned to off after the first image

• off: an image scaled to the current viewer setting

(In the Reference Viewer, this is set under the “Zoom New” setting in the channel preferences.)

3.1.14 Autocenter setting

The “autocenter” setting can be set to one of the following: “on”, “override”, “once” or “off”. This affects the behavior
of the viewer when changing to a new image (when done in the typical way) as follows:

• on: the pan position will be set to the center of the image

• override: like on, except that once the pan position is changed by the user manually it turns the setting to off

• once: like on, except that the setting is turned to off after the first image

• off: the pan position is taken from the current viewer setting

(In the Reference Viewer, this is set under the “Center New” setting in the channel preferences.)

48 Chapter 3. Quick Reference

ginga Documentation, Release 3.3.0

3.1.15 Autocuts setting

The “autocuts” setting can be set to one of following: “on”, “override”, “once” or “off”. This affects the behavior of
the viewer when changing to a new image (when done in the typical way) as follows:

• on: the cut levels for the image will be calculated and set according to the autocuts algorithm setting

• override: like on, except that once the cut levels are changed by the user manually it turns the setting to off

• once: like on, except that the setting is turned to off after the first image

• off: the cut levels are applied from the current viewer setting

(In the ref:Reference Viewer, this is set under the “Cut New” setting in the channel preferences.)

3.1.16 Reference Viewer Only

Commmand Description
H Raise Header tab.
Z Raise Zoom tab.
D Raise Dialogs tab.
C Raise Contents tab.
less than (<) Toggle collapse left pane.
greater than (>) Toggle collapse right pane.
f Toggle full screen.
F Panoramic full screen.
m Maximize window.
J Cycle workspace type (tabs/mdi/stack/grid). Note that “mdi” type is not supported on all

platforms.
k Add a channel with a generic name.
Left, Right (arrow
keys)

Previous/Next channel.

Up, Down (arrow
keys)

Previous/Next image in channel.

Note: If there are one or more plugins active, additional mouse or keyboard bindings may be present. In general, the
left mouse button is used to select, pick or move, and the right mouse button is used to draw a shape for the operation.

On the Mac, Ctrl + mouse button can also be used to draw or right-click. You can also invoke draw mode as described
above in the section on modes.

3.1. Main image window 49

ginga Documentation, Release 3.3.0

50 Chapter 3. Quick Reference

CHAPTER

FOUR

USER’S MANUAL

NN

Ginga is a toolkit for building viewers for scientific data in Python, particularly astronomical data. It also includes a
reference viewer for viewing FITS (Flexible Image Transport System) files.

The Ginga viewer is based on an image display widget that supports:

• Zooming and panning

• Color and intensity mapping

• A choice of several automatic cut levels algorithms, and

• Canvases for plotting scalable geometric forms.

In addition to the image display widget, the Ginga viewer provides a flexible plugin framework for extending the viewer
with many different features.

A relatively complete set of standard plugins is provided for features that we expect from a modern viewer: panning
and zooming windows, star catalog access, cuts, star pick/fwhm, and thumbnails.

4.1 Introduction

4.1.1 About

Ginga is a toolkit designed for building viewers for scientific image data in Python, visualizing 2D pixel data in numpy
arrays. By default the Ginga toolkit can view standard RGB(A) type images as well as astronomical data such as
contained in files based on the FITS (Flexible Image Transport System) file format. The viewer is easily extended to
handle additional formats, so long as the data can be accessed as numpy arrays.

The Ginga toolkit is written and maintained by software engineers at the Subaru Telescope, National Astronomical
Observatory of Japan, and the Space Telescope Science Institute. The code is released as open-source under a BSD
license and maintained at http://ejeschke.github.io/ginga/

51

https://fits.gsfc.nasa.gov//
http://ejeschke.github.io/ginga/

ginga Documentation, Release 3.3.0

4.1.2 Features

The Ginga toolkit centers around an image display widget that supports zooming and panning, color and intensity
mapping, a choice of several automatic cut levels algorithms, and canvases for plotting scalable geometric forms.

In addition to this widget, a general purpose reference FITS viewer is provided, based on a plugin framework. A
relatively complete set of standard plugins are provided for features that we expect from a modern FITS viewer: panning
and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, etc.

4.2 Core Concepts

The Ginga reference viewer operation is organized around several basic concepts: workspaces, channels, plugins, and
modes. Understanding these will greatly aid in using and modifying Ginga.

4.2.1 Workspaces

Ginga has a flexible workspace layout algorithm that allows customizing the appearance of the program. The majority
of the Ginga interface is constructed as hierarchical series of horizontally or vertically-adjustable panels. Each panel
usually terminates eventually into one or more workspaces.

Each workspace is implemented by a GUI toolkit container widget such as a notebook widget, where each item in the
workspace is identified by a tab. However, workspaces can also take the form of a stack (like a tabbed widget but with
no tabs showing), or a Multiple Document Interface (MDI) style container (subwindow desktop-style layout), or a grid
layout.

Workspaces typically contain either a channel viewer, a plugin UI or another workspace. In its default configuration,
Ginga starts up with a single row (horizontal) panel of three workspaces, as shown in the image below.

52 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The panel is sandwiched vertically between a menu bar and a tool bar. The left workspace is further subdivided into
an upper and lower, and there are also thin horizontal workspaces below the central workspace. The central workspace
is mainly used for viewers, while the other workspaces hold the plugin UIs.

Some workspaces can be converted dynamically between the different types. If the workspace contains a workspace
toolbar, the workspace type selector can be used to change the type:

The main workspace configured as “Tabs” (tabbed notebook, the default):

4.2. Core Concepts 53

ginga Documentation, Release 3.3.0

The main workspace configured as “Grid”:

54 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The main workspace configured as “Stack” (need to use workspace toolbar left/right arrows to switch between subwin-
dows):

4.2. Core Concepts 55

ginga Documentation, Release 3.3.0

The main workspace configured as “MDI” (individual windows can be sized and moved around the workspace area):

56 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

In the MDI configuration, the “MDI” menu in the workspace toolbar is enabled and can be used to tile or cascade the
subwindows.

Workspaces can be nested. In the example shown below, we show a cutout of the main workspace (type “MDI”) which
has sub-workspaces: ws1, configured as type Tabs and has two channels, and ws2, configured as type “Grid” and
containing four channels.

4.2. Core Concepts 57

ginga Documentation, Release 3.3.0

The initial layout of the workspaces is controlled by a table in the Ginga startup script (see Customizing Ginga). By
changing this table the layout can be substantially altered.

58 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

4.2.2 Channels

Another core tenet of Ginga is that that data content is organized into channels. A channel can be thought of as simply
a named category under which similar types of data might be organized. A few examples are:

• A channel for each type of instrument at a telescope

• A channel for each observation or calibration target

• Channels based on time or program or proposal identifier

If no channels are specified when Ginga starts up it simply creates a default channel named Image. New channels can
be created using the Channel/Add channel menu item. Pressing the + button in the workspace menu also adds a new
channel using the name specified in the text box just to the left of the button, or using a default prefix, if no name is
specified. Clicking - removes the currently selected channel. Clicking the left or right arrow buttons changes which
channel is selected in the workspace.

In the case where multiple channels are present, they are usually visually organized as tabs, a stack of windows, a
grid, or an MDI interface within the workspace as described in the section above, depending on how the workspace is
configured.

To change channels you simply click on the tab of the channel you want to view, or press the left or right arrow buttons
in the workspace menu. There is also a channel selector in the plugin manager toolbar at the bottom of the center pane.
You can change the channel by using the drop-down menu or by simply scrolling the mouse wheel on the control.

Channels occupy a flat namespace, i.e., there is no hierarchy in channel names.

4.2. Core Concepts 59

ginga Documentation, Release 3.3.0

Channel Viewers

A channel always has an image viewer associated with it, and may additionally have viewers for tables or other content.
Only one viewer is active at a time per channel. The channel viewer is what you see in the window representing that
channel. The viewer will display the content of the currently selected data item in that channel, and the appropriate
viewer will be change according to the type of the currently selected item in the channel (e.g. the table viewer will be
activated when a table is selected, the image viewer when an image is selected and so on).

In the Toolbar plugin, just above the status bar near the bottom of the window, clicking the up or down arrows moves
between items within the selected channel. The ordering of the items in the channel is by default determined by the order
in which they were added, but can be changed to alphanumeric sorted ordering if desired (this is a channel preference
that can be set under the “General” category in the channel preferences).

By default, images are loaded into the same channel you are currently viewing (unless your viewer has been customized
to load images according to special rules).

Note: To keep items organized, simply change to the desired channel before opening a new item or drag the file to the
desired channel viewer.

Channel Settings

Many preferences in Ginga are set on a per-channel basis. Some per-channel settings include:

• Color distribution algorithm

• Color map

• Intensity map

• Cut levels

• Auto cut levels algorithm

• Transforms (flip, swap)

• Rotation

• WCS display coordinates

• Zoom algorithm

• Scale

• Interpolation type

• Pan position

A new channel will generally inherit the settings for the generic Image channel until new preferences are defined and
saved for that channel.

60 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

If you create a new channel and had previously saved preferences for a channel with that name, the new channel will
adopt those preferences. Thus you can set up channels configured for certain telescopes or for types of data and easily
reuse them in later sessions.

Another idea embodied in the channel concept is that the user should not have to manage memory usage too explicitly.
Each channel has a setting that limits how many images it should keep in memory. If the number of images exceeds
the limit then Ginga will remove older images and load them back in as needed without user intervention.

Note: Many channel settings can be set and saved using the “Preferences” plugin.

4.2.3 Plugins

Almost all functionality in Ginga is achieved through the use of a plugin architecture.

Plugins are quasi-independent Python modules that can optionally have a Graphical User Interface. If they do have
a GUI, it can be loaded at program startup or be dynamically opened and closed during the duration of the viewer’s
execution.

Plugins can be global, in which case they don’t have any particular affiliation with a channel and are generally invoked
singularly, or local in which case they can be invoked in multiple instances–one per channel. Global plugins are often
written in a way that they respond to the action of the user changing channels. As an example, the “Pan” plugin will
change its image to match the image shown in the selected channel.

In this documentation we will also use the word operation to describe activating a plugin. For example, a “pick”
operation would use the Pick plugin.

Plugins are written as encapsulated Python modules that are loaded dynamically when Ginga starts. There is an API
for programming plugins (see Developing with Ginga).

The plugins are each described in more detail in Plugins.

For those plugins that do have a visible interface, the Ginga startup script can map them to certain workspaces. By
manipulating this mapping (and manipulating the workspace layout) we can customize the reference viewer to achieve
flexible layouts.

In the image at the top, the left workspace contains UIs for two global plugins: Pan (shown under the tab “Info”)
and Info (somewhat confusingly, shown under the tab “Synopsis”–the tab name for a plugin can be different from it’s
canonical name). The middle workspace holds all the viewing panes for each channel. The right workspace has the
Dialogs, Thumbs, Contents and Error panes. The operation of these plugins is described in Plugins.

4.2.4 Modes

Ginga provides a number of default bindings for key and pointer actions. However, there are too many different actions
to bind to a limited set of keys and pointer buttons. Modes allow us to overcome this limitation.

Modes are a mechanism that allow Ginga to accommodate many key and pointer bindings for a large number of possible
operations.

Modes are set on a per-channel basis. A mode is activated by pressing a particular key combination when the focus is
in the viewer, or by clicking an appropriate button in the Toolbar plugin. When the viewer is in a mode, the behavior is
that some special key, pointer and scroll bindings will be activated and override the default ones. An adjacent viewer
for a different channel may be in a different mode, or no mode.

4.2. Core Concepts 61

ginga Documentation, Release 3.3.0

Note: If a mode does not override a particular binding, the default binding will still be active.

Modes have an associated mode type which can be set to one of:

• held: The mode is active while the activating key is held down

• oneshot: The mode is released by initiating and finishing a cursor drag, or when Esc is pressed, if no cursor
drag is performed

• locked: The mode is locked until the mode key is pressed again (or Esc)

• softlock: The mode is locked until another mode key is pressed (or Esc)

By default most modes are activated in “locked” type.

Modes are usually indicated by a small black rectangle with the mode name and mode type in one corner of the viewer,
usually in the lower right corner of the viewer.

Note: When the lock is active it is signified by an additional “[L]” (locked) appearing in the mode indicator. Soft
locked mode is indicated by “[SL]” and oneshot by “[O]”.

In the above figure, you can see the mode indicator showing that the viewer is in “contrast” mode, with the lock on. The
same information can be seen in the Toolbar plugin. On the Toolbar plugin you can click to set the mode and toggle
the lock on/off.

4.3 General Operation

This chapter describes the general manipulations of images using Ginga.

For the most part these manipulations apply both to Ginga ImageView classes that can be embedded in a Python
application, as well as to the reference viewer distributed with Ginga.

Note: In cases where we are referring to something that is only available in the reference viewer these will be prefixed
by the notation [RV].

62 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

4.3.1 Keyboard and mouse operations

In this documentation we will use the following terms to describe the operations performed with the mouse:

• Click or Left-click means to click on an item with the left mouse button;

• Drag or Left-drag means to click, hold and drag with the left mouse button;

• Scroll means to scroll with the middle mouse wheel or a trackpad/touchpad;

• Scroll-click means to click with the middle mouse wheel/button;

• Scroll-drag means to click, hold and drag with the middle mouse wheel/button;

• Right-click means to click on an item with the right mouse button;

• Right-drag means to click, hold and drag with the right mouse button.

Mouse operations are also modified by the keyboard buttons Shift, and Ctrl.

Shift-click means to press and hold the Shift key while clicking with left mouse button. Shift-right-click is the same
using the right mouse button, etc.

Some mouse-controlled operations in Ginga are initiated by a key stroke. In these cases the key is pressed and released
(not held), and then the mouse is used to control the operation. Such operations are either terminated by releasing the
mouse button (if the operation employs a drag), and clicking on the image or by pressing the Esc key (if not a drag
operation).

Note: We describe the standard key and mouse bindings here. However these bindings can be changed completely by
the user. For more information on changing the bindings, see Section Binding Config File.

4.3.2 Loading a FITS or RGB image file

There are several ways to load a file into Ginga:

• Ginga supports drag-and-drop in a typical desktop environment, so you can simply drag and drop files from a
graphical file manager such as the Mac Finder or Linux Nautilus onto a Ginga viewing pane to load an image.

• [RV] Another way is to invoke the FBrowser plugin, which opens in the Dialogs tab. The plugin pane shows
file and folder contents and allows navigation up and down the filesystem hierarchy by double-clicking on folder
names. Simply navigate to the location of the file and double-click on the file name to load it, or drag it onto the
image pane.

• [RV] Use the Load Image entry from the Filemenu on the main menu bar at the top of the window. This opens
a standard file dialog popup window where you can navigate to the file you wish to load.

4.3.3 Zooming and panning

The display object used throughout most of the Ginga panels has built-in support for zooming and panning. The Quick
Reference has the complete listing of default keyboard and mouse bindings.

For example:

• The scroll wheel of the mouse can be used to zoom in and out, along with the “+” and “-” keys.

• The backquote key will fit the image to the window.

4.3. General Operation 63

ginga Documentation, Release 3.3.0

• Digit keys (1, 2, etc.) will zoom in to the corresponding zoom level, while holding Shift and pressing a zoom
key zooms out to the corresponding level.

When zoomed in, panning is enabled. Panning takes two forms:

1) Proportional panning or “drag panning” pans the image in direct proportion to the distance the mouse is moved.
You can think of this as dragging the image canvas in the direction you want to move it under the window portal.
To utilize a proportional pan, Ctrl-drag the canvas, or press Space followed by “q” to go into pan mode, and then
drag the canvas.

2) Free panning allows scrolling around the entire image by mapping the entire image boundaries to the window
boundaries. For example, moving the mouse to the upper right-hand corner of the window will pan to the upper right
hand corner of the image, etc. You can think of this mode as moving the window portal around over the canvas. To
initiate a free pan, press Space followed by “w” to enter “freepan” mode and then Scroll-drag to move around the
window.

[RV] The Pan plugin (usually embedded under the Info tab) shows the outline of the current pan position as a rectangle
on a small version of the whole image. Dragging this outline will also pan the image in the main window. You can
also click anywhere in the Pan window to set the pan position, or right drag an outline to roughly specify the region to
zoom and pan to together.

Pan position

Panning in Ginga is based on an (X, Y) coordinate known as the pan position. The pan position determines what Ginga
will try to keep in the middle of the window as the image is zoomed.

When zoomed out, you can Shift-click on a particular point in the image (or press the “p” key while hovering over a
spot), setting the pan position. Zooming afterward will keep the pan position in the center of the window. To reset the
pan position to the center of the image, press ‘c’.

Ginga has an auto zoom feature to automatically fit newly loaded images to the window, similar to what happens when
the backquote key is pressed. See “Zoom Preferences” section in Preferences for details.

4.3.4 How Ginga maps an image to color

The process of mapping a monochrome science image to color in Ginga involves four steps, in order:

1) Applying the cut levels, which scales all values in the image to a specified range1,

2) Applying a color distribution algorithm, which distributes values within that range to indexes into a color map
table, and

3) Applying a shift map, which shifts and stretches or shrinks the values according to the user’s contrast adjustment2,
and finally,

4) Applying an intensity map and color map to map the final output to RGB pixel values.

1 Some image viewers or graphing programs use the term “limits” for what we call “cut levels”.
2 What some programs call a “contrast/bias” adjustment.

64 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Setting cut levels

When visualizing pixel data with an arbitrary value range, the range is first scaled into a limited range based on the low
and high cut levels defined in the view object. These cut levels can be set manually by the user or automatically based
on an algorithm. This eliminates the effect of outlier pixel/flux values.

Manually setting cut levels

There are several ways to manually set the cut levels:

• Pressing Space followed by “s” key will put the viewer into “cuts” mode. Here you can invoke a dual (high and
low) interactive cut levels. Click and drag the mouse horizontally in the window to interactively set the high level,
and vertically to set the low level; and when you reach the desired levels, release the mouse button. Scrolling
the mouse wheel in this mode will also change the low and high cut levels simultaneously–toward or away from
each other, resulting in lower or higher contrast.

• [RV] The “Cut Low” and “Cut High” boxes in the Info plugin panel can be used. The current values are shown
to the left; simply type a new value in the corresponding box and press Enter or click the “Cut Levels” button
below. Cut values can also be set from the “Histogram” plugin.

Automatically setting cut levels

Ginga can algorithmically estimate and set the cut levels–called auto (cut) levels. To activate the auto levels:

• Press the (“a”) key when the viewing widget has the focus.

• [RV] Click the “Auto Levels” button in the Info plugin panel.

[RV] The auto cut levels feature is controlled by several factors in the preferences, including the choice of algorithm
and some parameters to the algorithm. See “Auto Cuts Preferences” section in Preferences for details.

Ginga can also automatically set the cut levels for new images displayed in the view. See “New Image Preferences”
section in Preferences for details.

Setting the color distribution algorithm

Ginga supports a number of color scale distribution algorithms, including:

• “linear”,

• “log”,

• “power”,

• “sqrt”,

• “squared”,

• “asinh”,

• “sinh”, and

• “histeq” (histogram equalization).

These can be sampled with the current color and intensity maps by pressing Space followed by “d” key to go into “dist”
mode, and then scrolling the mouse, pressing the up/down keys, or the “b” and “n” keys.

Press Esc to exit the “dist” mode.

4.3. General Operation 65

ginga Documentation, Release 3.3.0

To reset to the default (“linear”) map, press “D” (capital D).

[RV] The color scale distribution algorithms can also be set from the Preferences plugin, under the heading “Color
Distribution”.

Making contrast adjustments

The value range can be shifted and stretched or squeezed to alter the visibility and contrast of the image. This is
sometimes called a “bias/contrast” adjustment in other viewers.

In most Ginga configurations the shift map adjustment is bound to the Ctrl-right drag combination (hold Ctrl down and
right drag). Dragging left/right shifts the map, and up/down stretches or shrinks the map.

You can also press “t” to enter “contrast” mode, where you can then use a regular Left-drag.

Changing the color and intensity maps

The color and intensity maps control the final mapping of colors to the values in the image.

Intensity Maps

Intensity maps are available to produce a final permutation on the value range of the image before color is applied. The
function of these largely overlaps the function of the color distribution algorithm, so most users will typically use either
one or the other, but not both.

For example, the intensity map “log” essentially applies a log distribution to the range. If this has already been done
with the color distribution “log”, the effect is doubly applied.

Possible values for the intensity map are:

• “equa”,

• “expo”,

• “gamma”,

• “jigsaw”,

• “lasritt”,

• “log”,

• “neg”,

• “neglog”,

• “null”, “ramp” and

• “stairs”.

“ramp” is the default value.

While in “cmap” mode (described below), the “j” and “k” keys can be used to cycle through the intensity maps.

66 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Color Maps

To change color maps from the keyboard shortcuts, press Space followed by “y” to go into “cmap” mode. While in
“cmap” mode you can change color maps by scrolling the mouse, pressing the up/down keys, or the “b” and “n” keys.

While in “cmap” mode, pressing “I” (uppercase) will invert the current color map. Press Esc to exit cmap mode.

Note: Setting a new color map will cancel the color map inversion. Some color maps are available in both regular and
inverted forms. If selecting an already inverted (aka “reversed”) color map it is not necessary to explicitly invert it.

While many color maps are available built in, users can also define their own color maps or use matplotlib color maps,
if the matplotlib package is installed.

[RV] The ColorMapPicker global plugin is useful you to visualize all of the colormaps and apply one to the currently
active channel viewer.

4.3.5 Transforming the image view

Ginga provides several controls for transforming the image view. The image can be flipped in the X axis (“horizon-
tally”), Y axis (“vertically”), have the X and Y axes swapped, or any combination thereof. These operations can be
done by keyboard shortcuts:

• Press “[” to flip in X, “{” to restore.

• Press “]” to flip in Y, “}” to restore.

• Press “" to swap X and Y axes, “|” to restore.

The image can also be rotated in arbitrary amounts.

An interactive rotate operation can be initiated by pressing Space follwed by “r” in the image and then dragging the
mouse horizontally left or right to set the angle. Press “R” (Shift+R) to restore the angle to 0 (unrotated).

Note: It is less computationally-intensive to rotate the image using the simple transforms (flip, swap) than by the
rotation feature. Rotation may slow down some viewing operations.

[RV] The image can also be transformed in the channel Preferences (see “Transform Preferences”) which has check-
boxes for flip X, flip Y, swap XY and a box for rotation by degrees.

4.4 Plugins

Ginga is written so that most of the functionality of the program is achieved through the use of plugins. This modular
approach allows a large degree of flexibility and customization, as well as making overall design and maintenance of
the program simpler.

Plugins are divided into two types: global and local. A global plugin has a single instance shared by all channels, while
a local plugin creates a unique instance for each channel. If you switch channels, a global plugin will respond to the
change by updating itself, while a local plugin will remain unchanged if the channel is switched, because its operation
is specific to a given channel. (Ginga’s concept of channels is discussed in Channels.)

This chapter describes the set of plugins that come with Ginga. Those interested in writing their own custom plugins
should refer to Writing a Global Plugin or Anatomy of a Local Ginga Plugin.

4.4. Plugins 67

ginga Documentation, Release 3.3.0

4.4.1 Global plugins

Toolbar

Toolbar provides a set of convenience UI controls for common operations on viewers.

Plugin Type: Global
Toolbar is a global plugin. Only one instance can be opened.

Usage
Hovering over an icon on the toolbar should provide you with usage tool tip.

It is customizable using ~/.ginga/plugin_Toolbar.cfg, where ~ is your HOME directory:

#
Toolbar plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Toolbar.cfg"

Accepted value: 'oneshot' or 'locked'
mode_type = 'oneshot'

Pan

The Pan plugin provides a
small panning image that gives an overall “birds-eye” view of the channel image that last had the focus. If the channel

68 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

image is zoomed in 2X or greater, then the pan region is shown graphically in the Pan image by a rectangle.

Plugin Type: Global
Pan is a global plugin. Only one instance can be opened.

Usage
The channel image can be panned by clicking and/or dragging to place the rectangle. Using the right mouse button to
drag a rectangle will force the channel image viewer to try to match the region (taking into account the differences in
the aspect ratio between the drawn rectangle and the window dimensions). Scrolling in the Pan image will zoom the
channel image.

The color/intensity map and cut levels of the Pan image are updated when they are changed in the corresponding
channel image. The Pan image also displays the World Coordinate System (WCS) compass, if valid WCS metadata is
present in the FITS HDU being viewed in the channel.

The Pan plugin usually appears as a sub-pane under the “Info” tab, next to the Info plugin.

This plugin is not usually configured to be closeable, but the user can make it so by setting the “closeable” setting to
True in the configuration file–then Close and Help buttons will be added to the bottom of the UI.

It is customizable using ~/.ginga/plugin_Pan.cfg, where ~ is your HOME directory:

#
Pan plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pan.cfg"

Share a canvas with the channel viewer
use_shared_canvas = False

color of pan position marker
pan_position_color = 'yellow'

color of pan rectangle
pan_rectangle_color = 'red'

color of compass
compass_color = 'skyblue'

rotate the pan image if the main image is rotated?
rotate_pan_image = True

Add a close button to this plugin, so that it can be stopped
closeable = False

4.4. Plugins 69

ginga Documentation, Release 3.3.0

Info

The Info plugin provides a pane of
commonly useful metadata about the associated channel image. Common information includes some metadata header
values, coordinates, dimensions of the image, minimum and maximum values, etc. As the cursor is moved around the
image, the X, Y, Value, RA, and DEC values are updated to reflect the value under the cursor.

Plugin Type: Global
Info is a global plugin. Only one instance can be opened.

Usage
At the bottom of the Info interface the cut levels controls. Here the low and high cut levels are shown and can be
adjusted. Pressing the “Auto Levels” button will recalculate cut levels based on the current auto cut levels algorithm
and parameters defined in the channel preferences.

Below the “Auto Levels” button, the status of the settings for “Cut New”, “Zoom New”, and “Center New” are shown
for the currently active channel. These indicate how new images that are added to the channel will be affected by auto
cut levels, fitting to the window and panning to the center of the image.

The “Follow New” checkbox controls whether the viewer will automatically display new images added to the channel.
The “Raise New” checkbox controls whether an image viewer window is raised when a new image is added. These
two controls can be useful, for example, if an external program is adding images to the viewer, and you wish to prevent
interruption of your work examining a particular image.

70 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

As a global plugin, Info responds to a change of focus to a new channel by displaying the metadata from the new
channel. It typically appears under the “Synopsis” tab in the user interface.

This plugin is not usually configured to be closeable, but the user can make it so by setting the “closeable” setting to
True in the configuration file–then Close and Help buttons will be added to the bottom of the UI.

Header

The Header plugin provides a listing of the metadata associated with
the image.

4.4. Plugins 71

ginga Documentation, Release 3.3.0

Plugin Type: Global
Header is a global plugin. Only one instance can be opened.

Usage
The Header plugin shows the FITS keyword metadata from the image. Initially only the Primary HDU metadata is
shown. However, in conjunction with the MultiDim plugin, the metadata for other HDUs will be shown. See MultiDim
for details.

If the “Sortable” checkbox has been checked in the lower left of the UI, then clicking on a column header will sort the
table by values in that column, which may be useful for quickly locating a particular keyword.

If the “Include primary header” checkbox toggles the inclusion of the primary HDU keywords or not. This option may
be disabled if the image was created with an option not to save the primary header.

It is customizable using ~/.ginga/plugin_Header.cfg, where ~ is your HOME directory:

#
Header plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Header.cfg"

Sort header
sortable = True

Include primary header in table output
include_primary_header = False

If True, color every other row in alternating shades to improve
readability of long tables
color_alternate_rows = True

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

72 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Zoom

The Zoom plugin shows an enlarged image of a cutout region centered under the cursor position in the associated
channel image. As the cursor is moved around the image, the zoom image updates to allow close inspection of the
pixels or precise control in conjunction with other plugin operations.

Plugin Type: Global
Zoom is a global plugin. Only one instance can be opened.

Usage
The magnification of the zoom window can be changed by adjusting the “Zoom Amount” slider.

Two modes of operation are possible – absolute and relative zoom:

• In absolute mode, the zoom amount controls exactly the zoom level shown in the cutout; For example, the channel
image may be zoomed into 10X, but the zoom image will only show a 3X image if the zoom amount is set to 3X.

• In relative mode, the zoom amount setting is interpreted as relative to the zoom setting of the channel image. If
the zoom amount is set to 3X and the channel image is zoomed to 10X then the zoom image shown will be 13X
(10X + 3X). Note that the zoom amount setting can be < 1, so a setting of 1/3X with a 3X zoom in the channel
image will produce a 1X zoom image.

The “Refresh Interval” setting controls how quickly the Zoom plugin responds to the movement of the cursor in updating
the zoom image. The value is specified in milliseconds.

Tip: Usually setting a small refresh interval improves the overall responsiveness of the zoom image, and the default
value of 20 is a reasonable one. You can experiment with the value if the zoom image seems too jerky or out of sync

4.4. Plugins 73

ginga Documentation, Release 3.3.0

with the mouse movement in the channel image window.

The “Defaults” button restores the default settings of the controls.

It is customizable using ~/.ginga/plugin_Zoom.cfg, where ~ is your HOME directory:

#
Zoom plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Zoom.cfg"

default zoom level
zoom_amount = 3

refresh interval (sec)
NOTE: usually a small delay speeds things up
refresh_interval = 0.02

74 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Thumbs

The Thumbs plugin provides a thumbnail
index of all images viewed since the program was started.

Plugin Type: Global
Thumbs is a global plugin. Only one instance can be opened.

4.4. Plugins 75

ginga Documentation, Release 3.3.0

Usage
By default, Thumbs appear in cronological viewing history, with the newest images at the bottom and the oldest at the
top. The sorting can be made alphanumeric by a setting in the “plugin_Thumbs.cfg” configuration file.

Clicking on a thumbnail navigates you directly to that image in the associated channel. Hovering the cursor over a
thumbnail will show a tool tip that contains a couple of useful pieces of metadata from the image.

The “Auto Scroll” checkbox, if checked, will cause the Thumbs pan to scroll to the active image.

This plugin is not usually configured to be closeable, but the user can make it so by setting the “closeable” setting to
True in the configuration file–then Close and Help buttons will be added to the bottom of the UI.

Excluding images from Thumbs

Note: This also controls the behavior of Contents.

Although the default behavior is for every image that is loaded into the reference viewer to show up in Thumbs, there may
be cases where this is undesirable (e.g., when there are many images being loaded at a periodic rate by some automated
process). In such cases there are two mechanisms for suppressing certain images from showing up in Thumbs:

• Assigning the “genthumb” setting to False in a channel’s settings (for example from the Preferences plugin,
under the “General” settings) will exclude the channel itself and any of its images.

• Setting the “nothumb” keyword in the metadata of an image wrapper (not the FITS header, but by e.g., image.
set(nothumb=True)) will exclude that particular image from Thumbs, even if the “genthumb” setting is True
for that channel.

It is customizable using ~/.ginga/plugin_Thumbs.cfg, where ~ is your HOME directory:

#
Thumbs plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Thumbs.cfg"

If you revisit the same directories frequently
caching thumbs saves a lot of time when they need to be regenerated
cache_thumbs = False

cache location-- "local" puts them in a .thumbs subfolder, otherwise
they are cached in ~/.ginga/thumbs
cache_location = 'local'

Scroll the pane automatically when new thumbnails arrive
auto_scroll = True

Keywords to extract and show if we mouse over the thumbnail
tt_keywords = ['OBJECT', 'FRAMEID', 'UT', 'DATE-OBS']

Mandatory unique image identifier in tooltip
mouseover_name_key = 'NAME'

How many seconds to wait after an image is altered to begin trying
to rebuild a matching thumb. Usually a few seconds is good in case
there is ongoing adjustment of the image
rebuild_wait = 0.5

(continues on next page)

76 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

Max length of thumb on the long side
thumb_length = 180

Separation between thumbs in pixels
thumb_hsep = 15
thumb_vsep = 15

Sort the thumbs alphabetically: 'alpha' or None
sort_order = None

Thumbnail label length in num of characters (None = no limit)
label_length = 25

Cut off long label ('left', 'right', or None)
label_cutoff = 'right'

Option to highlight images that are displayed in channels.
If set to True this option will only highlight the image that is in the
channel with the keyboard focus
highlight_tracks_keyboard_focus = True

Highlighted label colors
label_bg_color = 'lightgreen'
label_font_color = 'white'

label_font_size = 10

Load visible thumbs in the background to replace placeholder icons
autoload_visible_thumbs = True

Length of time to wait after scrolling to begin autoloading
autoload_interval = 1.0

list of attributes to transfer from the channel viewer to the
thumbnail generator if the channel has an image in it
transfer_attrs = ['transforms', 'cutlevels', 'rgbmap']

Add a close button to this plugin, so that it can be stopped
closeable = False

4.4. Plugins 77

ginga Documentation, Release 3.3.0

Contents

The Contents plugin provides a table of contents-like interface for all the images viewed since the program was
started. Unlike Thumbs, Contents is sorted by channel. The contents also shows some configurable metadata from
the image.

Plugin Type: Global
Contents is a global plugin. Only one instance can be opened.

Usage
Click on a column heading to sort the table by that column; Click again to sort the other way.

Note: The columns and their values are drawn from the FITS header, if applicable. This can be customized by setting
the “columns” parameter in the “plugin_Contents.cfg” settings file.

The active image in the currently focused channel will normally be highlighted. Double-click on an image will force
that image to be shown in the associated channel. Single-click on any image to activate the buttons at the bottom of the
UI:

• “Display”: Make the image the active image.

• “Move”: Move the image to another channel.

78 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

• “Copy”: Copy the image to another channel.

• “Remove”: Remove the image from the channel.

If “Move” or “Copy” is done on an image that has been modified in Ginga (which would have an entry under
ChangeHistory, if used), the modification history will be retained as well. Removing an image from a channel
destroys any unsaved changes.

This plugin is not usually configured to be closeable, but the user can make it so by setting the “closeable” setting to
True in the configuration file–then Close and Help buttons will be added to the bottom of the UI.

Excluding images from Contents

Note: This also controls the behavior of Thumbs.

Although the default behavior is for every image that is loaded into the reference viewer to show up in Contents,
there may be cases where this is undesirable (e.g., when there are many images being loaded at a periodic rate by
some automated process). In such cases there are two mechanisms for suppressing certain images from showing up in
Contents:

• Assigning the “genthumb” setting to False in a channel’s settings (for example from the Preferences plugin,
under the “General” settings) will exclude the channel itself and any of its images.

• Setting the “nothumb” keyword in the metadata of an image wrapper (not the FITS header, but by e.g., image.
set(nothumb=True)) will exclude that particular image from Contents, even if the “genthumb” setting is True
for that channel.

It is customizable using ~/.ginga/plugin_Contents.cfg, where ~ is your HOME directory:

#
Contents plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Contents.cfg"

columns to show from metadata -- NAME and MODIFIED recommended
format: [(col header, keyword1), ...]
columns = [('Name', 'NAME'), ('Object', 'OBJECT'), ('Filter', 'FILTER01'), ('Date',
→˓'DATE-OBS'), ('Time UT', 'UT'), ('Modified', 'MODIFIED')]

If set to True, will always expand the tree in Contents when new entries are added
always_expand = True

Option to highlight images that are displayed in channels.
If set to True this option will only highlight the image that is in the
channel with the keyboard focus
highlight_tracks_keyboard_focus = False

If True, color every other row in alternating shades to improve
readability of long tables
color_alternate_rows = True

Highlighted row colors (in addition to bold text)
row_font_color = 'green'

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 100

(continues on next page)

4.4. Plugins 79

ginga Documentation, Release 3.3.0

(continued from previous page)

Add a close button to this plugin, so that it can be stopped
closeable = False

Colorbar

The Colorbar plugin shows a colorbar indicating the colormap applied to the image and showing the example values
along the range.

Plugin Type: Global
Colorbar is a global plugin. Only one instance can be opened.

Usage
Clicking and dragging in the Colorbar window will shift the colormap left or right. Scrolling will stretch or shrink
the colormap at the cursor position. Right-clicking will restore the colormap from any shift or stretch.

If the focus shifts to another channel, the colorbar will be updated to reflect that channel’s colormap and value infor-
mation.

It is customizable using ~/.ginga/plugin_Colorbar.cfg, where ~ is your HOME directory:

#
Colorbar plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Colorbar.cfg"

Set colorbar height, if default is too big or little
cbar_height = 36

size of font used in the color bar
fontsize = 10

Cursor

The Cursor plugin displays a summary line of text that changes as the user moves the cursor around an image. In the

80 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

standard reference viewer configuration, it appears as a line containing green text just below the Colorbar plugin.

Plugin Type: Global
Cursor is a global plugin. Only one instance can be opened.

Usage
Cursor simply tracks the cursor as it moves around an image and displays information about the pixel coordinates,
WCS coordinates (if available) and the value of the pixel under the cursor.

There is no associated configuration GUI.

Note: Pixel coordinates are affected by the general setting “pixel_coords_offset” which can be set in the “general.cfg”
configuration file for ginga. The default is value for this setting is 1.0, which means pixel coordinates are reported from
an origin of 1, as per the FITS standard.

It is customizable using ~/.ginga/plugin_Cursor.cfg, where ~ is your HOME directory:

#
Cursor plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Cursor.cfg"

Set to a particular font if you like one
font_name = 'fixed'

Set to a point size if you have a preference
font_size = None

Operations

This plugin defines the GUI for managing local plugins, a.k.a., “operations”.

Plugin Type: Global
Operations is a global plugin. Only one instance can be opened.

Usage
The Operations plugin acts as a visual interface to the reference viewer plugin manager. With this plugin, you can
change the active channel, start, stop, or unfocus a local plugin on a channel, and see which local plugins are running.

Note: By replacing or subclassing this plugin, you can customize the way the reference viewer starts and manages
operations.

It is customizable using ~/.ginga/plugin_Operations.cfg, where ~ is your HOME directory:

#
Operations plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Operations.cfg"

Show the change channel drop-down control
show_channel_control = True

(continues on next page)

4.4. Plugins 81

ginga Documentation, Release 3.3.0

(continued from previous page)

Color to highlight focused plugins in the operations control tray
focuscolor = "lightgreen"

Change to False to use combobox+button launch approach
use_popup_menu = True

WBrowser

Web browser plugin for Ginga.

Plugin Type: Global
WBrowser is a global plugin. Only one instance can be opened.

Usage
This global plugin is used to browse help pages for Ginga.

When a “Help” button is pressed from a plugin (e.g., Pick), Ginga will attempt to download an existing documen-
tation build from ReadTheDocs for the matching version. If successful, plugin documentation from that download is
displayed. If not successful or deliberately disabled in “plugin_WBrowser.cfg”, Ginga will render the plugin’s docstring
locally.

It is customizable using ~/.ginga/plugin_WBrowser.cfg, where ~ is your HOME directory:

#
WBrowser plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_WBrowser.cfg"

Set to True to force offline doc browsing, otherwise download from RTD
offline_doc_only = False

FBrowser (Open File)

This brings up FBrowser local plugin from the global menu for convenience.

82 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

4.4. Plugins 83

ginga Documentation, Release 3.3.0

ColorMapPicker

The ColorMapPicker plugin is used to
graphically browse and select a colormap for a channel image viewer.
84 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Plugin Type: Global
ColorMapPicker is a global plugin. Only one instance can be opened.

Usage
Operation of the plugin is very simple: the colormaps are displayed in the form of colorbars and labels in the main
view pane of the plugin. Click on any one of the bars to set the colormap of the currently active channel in the viewer.

Change the channel to set the colormap on a different channel.

You can scroll vertically or use the scroll bars to move through the colorbar samples.

Note: When the plugin starts for the first time, it will generate a bitmap RGB image of colorbars and labels corre-
sponding to all the available colormaps. This can take a few seconds depending on the number of colormaps installed.

Colormaps are shown with the “ramp” intensity map applied.

It is customizable using ~/.ginga/plugin_ColorMapPicker.cfg, where ~ is your HOME directory:

#
ColorMapPicker plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_ColorMapPicker.cfg"

cbar_ht = 20
cbar_wd = 300
cbar_sep = 10
cbar_pan_accel = 1.0

Errors

The Errors plugin reports error messages on the viewer.

Plugin Type: Global
Errors is a global plugin. Only one instance can be opened.

Usage
When an error occurs in Ginga, its message may be reported here.

This plugin is not usually configured to be closeable, but the user can make it so by setting the “closeable” setting to
True in the configuration file–then Close and Help buttons will be added to the bottom of the UI.

RC

The RC plugin implements a remote control interface for the Ginga viewer.

Plugin Type: Global
RC is a global plugin. Only one instance can be opened.

Usage
The RC (Remote Control) plugin provides a way to control Ginga remotely through the use of an XML-RPC interface.
Start the plugin from the “Plugins” menu (invoke “Start RC”) or launch ginga with the --modules=RC command line
option to start it automatically.

4.4. Plugins 85

ginga Documentation, Release 3.3.0

By default, the plugin starts up with server running on port 9000 bound to the localhost interface – this allows con-
nections only from the local host. If you want to change this, set the host and port in the “Set Addr” control and press
Enter – you should see the address update in the “Addr:” display field.

Please note that the host part (before the colon) does not indicate which host you want to allow access from, but to
which interface to bind. If you want to allow any host to connect, leave it blank (but include the colon and port number)
to allow the server to bind on all interfaces. Press “Restart” to then restart the server at the new address.

Once the plugin is started, you can use the ggrc script (included when ginga is installed) to control Ginga. Take a
look at the script if you want to see how to write your own programmatic interface.

Show example usage:

$ ggrc help

Show help for a specific Ginga method:

$ ggrc help ginga <method>

Show help for a specific channel method:

$ ggrc help channel <chname> <method>

Ginga (viewer shell) methods can be called like this:

$ ggrc ginga <method> <arg1> <arg2> ...

Per-channel methods can be called like this:

$ ggrc channel <chname> <method> <arg1> <arg2> ...

Calls can be made from a remote host by adding the options:

--host=<hostname> --port=9000

(In the plugin GUI, be sure to remove the “localhost” prefix from the “addr”, but leave the colon and port.)

Examples
Create a new channel:

$ ggrc ginga add_channel FOO

Load a file:

$ ggrc ginga load_file /home/eric/testdata/SPCAM/SUPA01118797.fits

Load a file into a specific channel:

$ ggrc ginga load_file /home/eric/testdata/SPCAM/SUPA01118797.fits FOO

Cut levels:

$ ggrc channel FOO cut_levels 163 1300

Auto cut levels:

86 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

$ ggrc channel FOO auto_levels

Zoom to a specific level:

$ ggrc -- channel FOO zoom_to -7

(Note the use of -- to allow us to pass a parameter beginning with -.)

Zoom to fit:

$ ggrc channel FOO zoom_fit

Transform (arguments are a boolean triplet: flipx flipy swapxy):

$ ggrc channel FOO transform 1 0 1

Rotate:

$ ggrc channel FOO rotate 37.5

Change colormap:

$ ggrc channel FOO set_color_map rainbow3

Change color distribution algorithm:

$ ggrc channel FOO set_color_algorithm log

Change intensity map:

$ ggrc channel FOO set_intensity_map neg

In some cases, you may need to resort to shell escapes to be able to pass certain characters to Ginga. For example, a
leading dash character is usually interpreted as a program option. In order to pass a signed integer, you may need to do
something like:

$ ggrc -- channel FOO zoom -7

Interfacing from within Python
It is also possible to control Ginga in RC mode from within Python. The following describes some of the functionality.

Connecting

First, launch Ginga and start the RC plugin. This can be done from the command line:

ginga --modules=RC

From within Python, connect with a RemoteClient object as follows:

from ginga.util import grc
host='localhost'
port=9000
viewer = grc.RemoteClient(host, port)

This viewer object is now linked to the Ginga using RC.

Load an Image

4.4. Plugins 87

ginga Documentation, Release 3.3.0

You can load an image from memory in a channel of your choosing. First, connect to a channel:

ch = viewer.channel('Image')

Then, load a Numpy image (i.e., any 2D ndarray):

import numpy as np
img = np.random.rand(500, 500) * 10000.0
ch.load_np('Image_Name', img, 'fits', {})

The image will display in Ginga and can be manipulated as usual.

Overlay a Canvas Object

It is possible to add objects to the canvas in a given channel. First, connect:

canvas = viewer.canvas('Image')

This connects to the channel named “Image”. You can clear the objects drawn in the canvas:

canvas.clear()

You can also add any basic canvas object. The key issue to keep in mind is that the objects input must pass through the
XMLRC protocol. This means simple data types (float, int, list, or str); No arrays. Here is an example to plot a
line through a series of points defined by two Numpy arrays:

x = np.arange(100)
y = np.sqrt(x)
points = list(zip(x.tolist(), y.tolist()))
canvas.add('path', points, color='red')

This will draw a red line on the image.

88 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

WCSMatch

WCSMatch is a global
plugin for the Ginga image viewer that allows you to roughly align images with different scales and orientations using
the images’ World Coordinate System (WCS) for viewing purposes.

Plugin Type: Global
WCSMatch is a global plugin. Only one instance can be opened.

4.4. Plugins 89

ginga Documentation, Release 3.3.0

Usage
To use, simply start the plugin, and from the plugin GUI select a channel from the drop-down menu labeled “Reference
Channel”. The image contained in that channel will be used as a reference for synchronizing the images in the other
channels.

The channels will be synchronized in viewing (pan, scale (zoom), transforms (flips) and rotation. The checkboxes
“Match Pan”, “Match Scale”, “Match Transforms” and “Match Rotation” can be checked or not to control which
attributes are synchronized between channels.

To completely “unlock” the synchronization, simply select “None” from the “Reference Channel” drop-down menu.

Currently, there is no way to limit the channels that are affected by the plugin.

90 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

ChangeHistory

Keep track of buffer change history.

Plugin Type: Global
ChangeHistory is a global plugin. Only one instance can be opened.

This plugin is used to log any changes to data buffer. For example, a change log would appear here if a new image is
added to a mosaic via the Mosaic plugin. Like Contents, the log is sorted by channel, and then by image name.

Usage
History should stay no matter what channel or image is active. New history can be added, but old history cannot be
deleted, unless the image/channel itself is deleted.

The redo() method picks up an 'add-image-info' event and displays related metadata here. The metadata is

4.4. Plugins 91

ginga Documentation, Release 3.3.0

obtained as follows:

channel = self.fv.get_channel_info(chname)
iminfo = channel.get_image_info(imname)
timestamp = iminfo.time_modified
description = iminfo.reason_modified # Optional

Both 'time_modified' and 'reason_modified' have to be explicitly set by the calling plugin in the same method
that issues the 'add-image-info' callback, like this:

This changes the data buffer
image.set_data(new_data, ...)
Add description for ChangeHistory
info = dict(time_modified=datetime.utcnow(),

reason_modified='Data has changed')
self.fv.update_image_info(image, info)

It is customizable using ~/.ginga/plugin_ChangeHistory.cfg, where ~ is your HOME directory:

#
ChangeHistory plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_ChangeHistory.cfg"

If set to True, will always expand the tree in ChangeHistory when
new entries are added
always_expand = True

If set to True, rows will have alternate colors
color_alternate_rows = True

Timestamp column width
ts_colwidth = 250

SAMP Control

The SAMP plugin
implements a SAMP interface for the Ginga reference viewer.

Note: To run this plugin, you need to install astropy that has the samp module.

92 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Plugin Type: Global
SAMP is a global plugin. Only one instance can be opened.

Usage
Ginga includes a plugin for enabling SAMP (Simple Applications Messaging Protocol) support. With SAMP support,
Ginga can be controlled and interoperate with other astronomical desktop applications.

The SAMP module is not started by default. To start it when Ginga starts, specify the command line option:

--modules=SAMP

Otherwise, start it using “Start SAMP” from the “Plugins” menu.

Currently, SAMP support is limited to image.load.fits messages, meaning that Ginga will load a FITS file if it
receives one of these messages.

Ginga’s SAMP plugin uses the astropy.samp module, so you will need to have astropy installed to use the plugin.
By default, Ginga’s SAMP plugin will attempt to start a SAMP hub if one is not found running.

It is customizable using ~/.ginga/plugin_SAMP.cfg, where ~ is your HOME directory:

#
SAMP plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_SAMP.cfg"

SAMP_channel = 'Image'

Default location is set by Ginga's viewer.
#cache_location = '/my/cache/path/'

default_connect = True

start_hub = True

4.4. Plugins 93

ginga Documentation, Release 3.3.0

Log

See the logging output of the reference viewer.

Plugin Type: Global
Log is a global plugin. Only one instance can be opened.

Usage
The Log plugin builds a UI that includes a large scrolling text widget showing the active output of the logger. The latest
output shows up at the bottom. This can be useful for troubleshooting problems.

There are four controls:

• The combo box on the lower left allows you to choose the level of logging desired. The four levels, in order of
verbosity are: “debug”, “info”, “warn”, and “error”.

• The box with the number on the lower right allows you to set how many lines of input to keep in the display
buffer (e.g., keep only the last 1000 lines).

• The checkbox “Auto scroll”, if checked, will cause the large text widget to scroll to the end as new log messages
are added. Uncheck this if you want to peruse the older messages and study them.

• The “Clear” button is used to clear the text widget, so that only new logging shows up.

94 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Command

This plugin provides a command line interface to the reference viewer.

Note: The command line is for use within the plugin UI. If you are looking for a remote command line interface,
please see the RC plugin.

Plugin Type: Global
Command is a global plugin. Only one instance can be opened.

Usage
Get a list of commands and parameters:

g> help

Execute a shell command:

g> !cmd arg arg ...

Notes
An especially powerful tool is to use the reload_local and reload_global commands to reload a plugin when you
are developing that plugin. This avoids having to restart the reference viewer and laboriously reload data, etc. Simply
close the plugin, execute the appropriate “reload” command (see the help!) and then start the plugin again.

Note: If you have modifed modules other than the plugin itself, these will not be reloaded by these commands.

4.4. Plugins 95

ginga Documentation, Release 3.3.0

SaveImage (Save File)

Save images to output files.

Plugin Type: Global
SaveImage is a global plugin. Only one instance can be opened.

Usage
This global plugin is used to save any changes made in Ginga back to output images. For example, a mosaic image that
was created by the Mosaic plugin. Currently, only FITS images (single or multiple extensions) are supported.

96 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Given the output directory (e.g., /mypath/outputs/), a suffix (e.g., ginga), an image channel (Image), and a selected
image (e.g., image1.fits), the output file will be /mypath/outputs/image1_ginga_Image.fits. Inclusion of the
channel name is optional and can be omitted using plugin configuration file, plugin_SaveImage.cfg. The modified
extension(s) will have new header or data extracted from Ginga, while those not modified will remain untouched.
Relevant change log entries from the ChangeHistory global plugin will be inserted into the history of its PRIMARY
header.

Note: This plugin uses the module astropy.io.fits to write the output images, regardless of what is chosen for
FITSpkg in the general.cfg configuration file.

It is customizable using ~/.ginga/plugin_SaveImage.cfg, where ~ is your HOME directory:

#
SaveImage plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_SaveImage.cfg"

Default output parameters. Can also be changed in the GUI.
output_directory = '.'
output_suffix = 'ginga'

Include channel name in the suffix.
If False, only output_suffix is used regardless of channel.
include_chname = True

Clobber existing output files or not
clobber = False

Only list modified images from the channel
modified_only = True

Maximum mosaic size to allow for writing out.
This is useful to prevent super large mosaic from being written.
Default is 10k x 10k
max_mosaic_size = 1e8

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

4.4. Plugins 97

ginga Documentation, Release 3.3.0

Downloads

Downloads GUI for the Ginga reference viewer.

Plugin Type: Global
Download is a global plugin. Only one instance can be opened.

Usage
Open this plugin to monitor the progress of URI downloads. Start it using the “Plugins” or “Operations” menu, and
selecting the “Downloads” plugin from under the “Util” category.

If you want to initiate a download, simply drag a URI into a channel image viewer or the Thumbs pane.

You can remove the information about a download at any time by clicking the “Clear” button for its entry. You can
clear entries for all downloads by clicking the “Clear All” button at the bottom.

Currently, it is not possible to cancel a download in progress.

Settings
The auto_clear_download option, if set to True, will cause a download entry to be automatically deleted from the
pane when the download completes. It does not remove any downloaded file(s).

The download folder can be user-defined by assigning a value to the “download_folder” setting in ~/.ginga/general.cfg.
If unassigned, it defaults to a folder in the platform-specific default temp directory (as told by the Python ‘tempfile’
module).

98 Chapter 4. User’s Manual

https://docs.python.org/3/library/constants.html#True

ginga Documentation, Release 3.3.0

4.4.2 Local plugins

An operation is the activation of a local plugin to perform some function. The plugin manager toolbar at the bottom
of the center pane is the graphical way to start an operation.

Pick

Perform quick astronomical stellar analysis.

Plugin Type: Local
Pick is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
The Pick plugin is used to perform quick astronomical data quality analysis on stellar objects. It locates stellar can-
didates within a drawn box and picks the most likely candidate based on a set of search settings. The Full Width Half
Max (FWHM) is reported on the candidate object, as well as its size based on the plate scale of the detector. Rough
measurement of background, sky level and brightness is also done.

Defining the pick area
The default pick area is defined as a box of approximately 30x30 pixels that encloses the search area.

The move/draw/edit selector at the bottom of the plugin is used to determine what operation is being done to the pick
area:

• If “move” is selected, then you can move the existing pick area by dragging it or clicking where you want the
center of it placed. If there is no existing area, a default one will be created.

• If “draw” is selected, then you can draw a shape with the cursor to enclose and define a new pick area. The
default shape is a box, but other shapes can be selected in the “Settings” tab.

4.4. Plugins 99

ginga Documentation, Release 3.3.0

Fig. 1: “Move”, “Draw”, and “Edit” buttons.

• If “edit” is selected, then you can edit the pick area by dragging its control points, or moving it by dragging in
the bounding box.

After the area is moved, drawn or edited, Pick will perform one of three actions:

1. In “Quick Mode” ON, with “From Peak” OFF, it will simply attempt to perform a calculation based on the
coordinate under the crosshair in the center of the pick area.

2. In “Quick Mode” ON, with “From Peak” ON, it will perform a quick detection of peaks in the pick area and
perform a calculation on the first one found, using the peak’s coordinates.

3. In “Quick Mode” OFF, it will search the area for all peaks and evaluate the peaks based on the criteria in the
“Settings” tab of the UI (see “The Settings Tab” below) and try to locate the best candidate matching the settings.

If a candidate is found
The candidate will be marked with a point (usually an “X”) in the channel viewer canvas, centered on the object as
determined by the horizontal and vertical FWHM measurements.

The top set of tabs in the UI will be populated as follows:

Fig. 2: “Image” tab of Pick area.

The “Image” tab will show the contents of the cutout area. The widget in this tab is a Ginga widget and so can be
zoomed and panned with the usual keyboard and mouse bindings (e.g., scroll wheel). It will also be marked with a
point centered on the object and additionally the pan position will be set to the found center.

The “Contour” tab will show a contour plot. This is a contour plot of the area immediately surrounding the candidate,
and not usually encompassing the entire region of the pick area. You can use the scroll wheel to zoom the plot and a

100 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fig. 3: “Contour” tab of Pick area.

click of the scroll wheel (mouse button 2) to set the pan position in the plot.

Fig. 4: “FWHM” tab of Pick area.

The “FWHM” tab will show a FWHM plot. The purple lines show measurements in the X direction and the green lines
show measurements in the Y direction. The solid lines indicate actual pixel values and the dotted lines indicate the
fitted 1D function. The shaded purple and green regions indicate the FWHM measurements for the respective axes.

The “Radial” tab contains a radial profile plot. Plotted points in purple are data values, and a line is fitted to the data.

The “EE” tab contains a plot of fractional encircled and ensquared energies (EE) in purple and green, respectively,
for the chosen target. Simple background subtraction is done in a way that is consistent with FWHM calculations
before EE values are measured. The sampling and total radii, shown as black dashed lines, can be set in the “Settings”
tab; when these are changed, click “Redo Pick” to update the plot and measurements. The measured EE values at the
given sampling radius are also displayed in the “Readout” tab. When reporting is requested, the EE values at the given

4.4. Plugins 101

ginga Documentation, Release 3.3.0

Fig. 5: “Radial” tab of Pick area.

sampling radius and the radius itself will be recorded under “Report” table, along with other information.

When “Show Candidates” is active, the candidates near the edges of the bounding box will not have EE values (set to
0).

The “Readout” tab will be populated with a summary of the measurements. There are two buttons and three check
boxes in this tab:

• The “Default Region” button restores the pick region to the default shape and size.

• The “Pan to pick” button will pan the channel viewer to the located center.

• The “Quick Mode” check box toggles “Quick Mode” on and off. This affects the behavior of the pick region as
described above.

• The “From Peak” check box changes the behavior of “Quick Mode” slightly as described above.

• If “Center on pick” is checked, the shape will be recentered on the located center, if found (i.e., the shape “tracks”
the pick).

The “Controls” tab has a couple of buttons that will work off of the measurements.

• The “Bg cut” button will set the low cut level of the channel viewer to the measured background level. A delta
to this value can be applied by setting a value in the “Delta bg” box (press “Enter” to change the setting).

• The “Sky cut” button will set the low cut level of the channel viewer to the measured sky level. A delta to this
value can be applied by setting a value in the “Delta sky” box (press “Enter” to change the setting).

• The “Bright cut” button will set the high cut level of the channel viewer to the measured sky+brightness levels.
A delta to this value can be applied by setting a value in the “Delta bright” box (press “Enter” to change the
setting).

The “Report” tab is used to record information about the measurements in tabular form.

By pressing the “Add Pick” button, the information about the most recent candidate is added to the table. If the “Record
Picks automatically” checkbox is checked, then any candidates are added to the table automatically.

102 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fig. 6: “EE” tab of Pick area.

4.4. Plugins 103

ginga Documentation, Release 3.3.0

Fig. 7: “Readout” tab of Pick area.

Fig. 8: “Controls” tab of Pick area.

104 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fig. 9: “Report” tab of Pick area.

Note: If the “Show Candidates” checkbox in the “Settings” tab is checked, then all objects found in the region
(according to the settings) will be added to the table instead of just the selected candidate.

You can clear the table at any time by pressing the “Clear Log” button. The log can be saved to a table by putting a
valid path and filename in the “File:” box and pressing “Save table”. File type is automatically determined by the given
extension (e.g., “.fits” is FITS and “.txt” is plain text).

If no candidate is found
If no candidate can be found (based on the settings), then the pick area is marked with a red point centered on the pick
area.

The image cutout will be taken from this central area and so the “Image” tab will still have content. It will also be
marked with a central red “X”.

The contour plot will still be produced from the cutout.

All the other plots will be cleared.

The Settings Tab
The “Settings” tab controls aspects of the search within the pick area:

• The “Show Candidates” checkbox controls whether all detected sources are marked or not (as shown in the
figure below). Additionally, if checked, then all the found objects are added to the pick log table when using the
“Report” controls.

• The “Draw type” parameter is used to choose the shape of the pick area to be drawn.

• The “Radius” parameter sets the radius to be used when finding and evaluating bright peaks in the image.

• The “Threshold” parameter is used to set a threshold for peak finding; if set to “None”, then a reasonable default
value will be chosen.

• The “Min FWHM” and “Max FWHM” parameters can be used to eliminate certain sized objects from being
candidates.

4.4. Plugins 105

ginga Documentation, Release 3.3.0

Fig. 10: Marker when no candidate found.

Fig. 11: Contour when no candidate found.

106 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fig. 12: “Settings” tab of Pick plugin.

• The “Ellipticity” parameter is used to eliminate candidates based on their asymmetry in shape.

• The “Edge” parameter is used to eliminate candidates based on how close to the edge of the cutout they are.
NOTE: currently this works reliably only for non-rotated rectangular shapes.

• The “Max side” parameter is used to limit the size of the bounding box that can be used in the pick shape. Larger
sizes take longer to evaluate.

• The “Coordinate Base” parameter is an offset to apply to located sources. Set to “1” if you want sources pixel
locations reported in a FITS-compliant manner and “0” if you prefer 0-based indexing.

• The “Calc center” parameter is used to determine whether the center is calculated from FWHM fitting (“fwhm”)
or centroiding (“centroid”).

• The “FWHM fitting” parameter is used to determine which function is is used for FWHM fitting (“gaussian”
or “moffat”). The option to use “lorentz” is also available if “calc_fwhm_lib” is set to “astropy” in ~/.ginga/
plugin_Pick.cfg.

• The “Contour Interpolation” parameter is used to set the interpolation method used in rendering the background
image in the “Contour” plot.

• The “EE total radius” defines the radius (for encircled energy) and box half-width (for ensquared energy) in pixels
where EE fraction is expected to be 1 (i.e., all the flux for a point-spread function is contained within).

• The “EE sampling radius” is the radius in pixel used to sample the measured EE curves for reporting.

The “Redo Pick” button will redo the search operation. It is convenient if you have changed some parameters and want
to see the effect based on the current pick area without disturbing it.

User Configuration
It is customizable using ~/.ginga/plugin_Pick.cfg, where ~ is your HOME directory:

4.4. Plugins 107

ginga Documentation, Release 3.3.0

Fig. 13: The channel viewer when “Show Candidates” is checked.

#
Pick plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pick.cfg"

color_pick = 'green'
shape_pick = 'box'
color_candidate = 'purple'

Offset to add to Pick results. Default is 1.0 for FITS like indexing,
set to 0.0 here if you prefer numpy-like 0-based indexing
pixel_coords_offset = 0.0

Maximum side for a pick region
max_side = 1024

For contour plot
num_contours = 8
How big of a radius are we willing to consider from the center of the
pick? bigger numbers == slower
contour_size_min = 10
contour_size_limit = 70

Start in Quick Mode?
quick_mode = False

(continues on next page)

108 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

quick_from_peak = True

should the pick shape recenter on the found object center, if any?
useful for "tracking" an object that is moving from image to image
center_on_pick = False

Star candidate search parameters
radius = 10
Set threshold to None to auto calculate it
threshold = None
Minimum and maximum fwhm to be considered a candidate
min_fwhm = 1.5
max_fwhm = 50.0
Minimum ellipticity to be considered a candidate
min_ellipse = 0.5
Percentage from edge to be considered a candidate
edge_width = 0.01
Graphically indicate all possible considered candidates
show_candidates = False

Center of object is based on FWHM ("fwhm") or centroid ("centroid")
calculation:
calc_center_alg = 'centroid'

Library to use for FWHM fitting ("native" or "astropy")
calc_fwhm_lib = 'native'

Fitting function to use for FWHM ("gaussian" or "moffat")
calc_fwhm_alg = 'gaussian'

Defaults for delta cut levels (in Controls tab)
delta_sky = 0.0
delta_bright = 0.0

Encircled and ensquared energy (EE) calculations:
a. Radius (pixel) where EE fraction is expected to be 1.
ee_total_radius = 10.0
b. Radius (pixel) to sample EE for reporting.
ee_sampling_radius = 2.5

use a different color/intensity map than channel image?
pick_cmap_name = None
pick_imap_name = None

For Reports tab
record_picks = True

Set this to a file name, if None a filename will be automatically chosen
report_log_path = None

4.4. Plugins 109

ginga Documentation, Release 3.3.0

Ruler

Ruler is a simple plugin designed to measure distances on an image.

Plugin Type: Local
Ruler is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
Rulermeasures distance by calculating a spherical triangulation via WCS mapping of three points defined by a single
line drawn on the image. By default, the distance is shown in arcminutes of sky, but using the “Units” control, it can
be changed to show degrees or pixel distance instead.

Click and drag to establish a ruler between two points. When you finish the draw operation the ruler is established and
the plugin UI will update to show detail about the line, including the endpoint positions and the angle of the line. The
units of the angle can be toggled between degrees and radians using the adjacent drop-down box.

To erase the old and make a new ruler, click and drag again. When another line is drawn, it replaces the first one. When
the plugin is closed, the graphic overlay is removed. Should you want “sticky rulers”, use the Drawing plugin (and
choose “Ruler” as the drawing type).

Editing
To edit an existing ruler, click the radio button in the plugin UI labeled “Edit”. If the ruler does not become selected
immediately, click on the diagonal connecting the two points. This should establish a bounding box around the ruler
and show its control points. Drag within the bounding box to move the ruler or click and drag the endpoints to edit the
ruler. The ruler can also be scaled or rotated using those control points.

UI

110 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The units shown for distance can be selected from the drop-down box in the UI. You have a choice of “arcmin”,
“degrees”, or “pixels”. The first two require a valid and working WCS in the image.

The endpoint values are shown in the UI, but can additionally be shown in the ruler graphic if the “Show ends” checkbox
is toggled. Plumb lines will be shown if the “Show plumb” box is toggled.

Buttons
The “Pan to src” button will pan the main image to the origin of the line drawn, while “Pan to dst” will pan to the end.
“Pan to ctr” sets the pan position to the center point of the line. These buttons may be useful for close up, zoomed-in
work on the image. “Clear” clears the ruler from the image.

Tips Open the “Zoom” plugin to precisely see detail of the cursor area (the graphics of the ruler are not shown there,
however). The “Pick” plugin can also be used in conjunction with Ruler to identify the central point of an object, when
aligning either end of the ruler.

MultiDim

4.4. Plugins 111

ginga Documentation, Release 3.3.0

A
plugin to navigate HDUs in a FITS file or planes in a 3D cube or higher dimension dataset.

Plugin Type: Local
MultiDim is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
MultiDim is a plugin designed to handle data cubes and multi-HDU FITS files. If you have opened such an image in
Ginga, starting this plugin will enable you to browse to other slices of the cube or view other HDUs.

For a data cube, you can save a slice as an image using the “Save Slice” button or create a movie using the “Save Movie”
button by entering the “Start” and “End” slice indices. This feature requires mencoder to be installed.

For a FITS table, its data are read in using Astropy table. Column units are displayed right under the main header
(“None” if no unit). For masked columns, masked values are replaced with pre-defined fill values.

Browsing HDUs
Use the HDU drop down list in the upper part of the UI to browse and select an HDU to open in the channel.

Navigating Cubes
Use the controls in the lower part of the UI to select the axis and to step through the planes in that axis.

User Configuration
It is customizable using ~/.ginga/plugin_MultiDim.cfg, where ~ is your HOME directory:

#
MultiDim plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_MultiDim.cfg"

Sort option for HDU listing.
Available attributes:
'index' -- Extension index
'name' -- Extension name

(continues on next page)

112 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

'extver' -- Extension version number
'htype' -- HDU type (PrimaryHDU, ImageHDU, TableHDU)
'dtype' -- Data type
Example to sort by HDU name and extver:
sort_keys = ['name', 'extver']
Default is to sort by index only:
sort_keys = ['index']

Reverse for HDU listing?
sort_reverse = False

Cuts

A plugin for generating a plot of the values along a line or path.

Plugin Type: Local
Cuts is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
Cuts plots a simple graph of pixel values vs. index for a line drawn through the image. Multiple cuts can be plotted.

There are four kinds of cuts available: line, path, freepath and beziercurve:

• The “line” cut is a straight line between two points.

• The “path” cut is drawn like an open polygon, with straight segments in-between.

• The “freepath” cut is like a path cut, but drawn using a free-form stroke following the cursor movement.

• The “beziercurve” path is a cubic Bezier curve.

If a new image is added to the channel while the plugin is active, it will update with the new calculated cuts on the new
image.

If the “enable slit” setting is enabled, this plugin will also allow slit image functionality (for multidimensional images)
via a “Slit” tab. In the tab UI, select one axis from the “Axes” list and draw a line. This will create a 2D image that

4.4. Plugins 113

ginga Documentation, Release 3.3.0

assumes the first two axes are spatial and index the data along the selected axis. Much like Cuts, you can view the
other slit images using the cut selection drop down box.

Drawing Cuts
The “New Cut Type” menu let you choose what kind of cut you are going to draw.

Choose “New Cut” from the “Cut” dropdown menu if you want to draw a new cut. Otherwise, if a particular named
cut is selected then that will be replaced by any newly drawn cut.

While drawing a path or beziercurve cut, press ‘v’ to add a vertex, or ‘z’ to remove the last vertex added.

Keyboard Shortcuts
While hovering the cursor, press ‘h’ for a full horizontal cut and ‘j’ for a full vertical cut.

Deleting Cuts
To delete a cut, select its name from the “Cut” dropdown and click the “Delete” button. To delete all cuts, press “Delete
All”.

Editing Cuts
Using the edit canvas function, it is possible to add new vertices to an existing path and to move vertices around. Click
the “Edit” radio button to put the canvas in edit mode. If a cut is not automatically selected, you can now select the
line, path, or curve by clicking on it, which should enable the control points at the ends or vertices – you can drag these
around. To add a new vertex to a path, hover the cursor carefully on the line where you want the new vertex and press
‘v’. To get rid of a vertex, hover the cursor over it and press ‘z’.

You will notice one extra control point for most objects, which has a center of a different color – this is a movement
control point for moving the entire object around the image when in edit mode.

You can also select “Move” to just move a cut unchanged.

Changing Width of Cuts
The width of ‘line’ cuts can be changed using the “Width Type” menu:

• “none” indicates a cut of zero radius; i.e., only showing the pixel values along the line

• “x” will plot the sum of values along the X axis orthogonal to the cut.

• “y” will plot the sum of values along the Y axis orthogonal to the cut.

• “perpendicular” will plot the sum of values along an axis perpendicular to the cut.

The “Width radius” controls the width of the orthogonal summation by an amount on either side of the cut – 1 would
be 3 pixels, 2 would be 5 pixels, etc.

Saving Cuts
Use the “Save” button to save the Cuts plot as as image and data as a Numpy compressed archive.

Copying Cuts
To copy a cut, select its name from the “Cut” dropdown and click the “Copy Cut” button. A new cut will be created
from it. You can then manipulate the new cut independently.

User Configuration
It is customizable using ~/.ginga/plugin_Cuts.cfg, where ~ is your HOME directory:

#
Cuts plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Cuts.cfg"

(continues on next page)

114 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

If set to True will always select a cut after drawing it
select_new_cut = True

If set to True will automatically change to "move" mode after draw
draw_then_move = True

If set to True will label cuts with a text annotation
label_cuts = True

If set to True will add a legend to the cuts plot
show_cuts_legend = False

If set to True will add Slit tab
enable_slit = False

Default cut colors
colors = ['magenta', 'skyblue2', 'chartreuse2', 'cyan', 'pink', 'burlywood2', 'yellow3',
→˓'turquoise', 'coral1', 'mediumpurple2']

If set to True, will update graph continuously as cursor is dragged
around image
drag_update = False

Histogram

Histogram plots a histogram for a
region drawn in the image, or for the entire image.

Plugin Type: Local
Histogram is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
Click and drag to define a region within the image that will be used to calculate the histogram. To take the histogram
of the full image, click the button in the UI labeled “Full Image”.

4.4. Plugins 115

ginga Documentation, Release 3.3.0

Note: Depending on the size of the image, calculating the full histogram may take time.

If a new image is selected for the channel, the histogram plot will be recalculated based on the current parameters with
the new data.

Unless disabled in the settings file for the histogram plugin, a line of simple statistics for the box is calculated and
shown in a line below the plot.

UI Controls
Three radio buttons at the bottom of the UI are used to control the effects of the click/drag action:

• select “Move” to drag the region to a different location

• select “Draw” to draw a new region

• select “Edit” to edit the region

To make a log plot of the histogram, check the “Log Histogram” checkbox. To plot by the full range of values in the
image instead of by the range within the cut values, uncheck the “Plot By Cuts” checkbox.

The “NumBins” parameter determines how many bins are used in calculating the histogram. Type a number in the box
and press “Enter” to change the default value.

Cut Levels Convenience Controls
Because a histogram is useful feedback for setting the cut levels, controls are provided in the UI for setting the low and
high cut levels in the image, as well as for performing an auto cut levels, according to the auto cut levels settings in the
channel preferences.

You can set cut levels by clicking in the histogram plot:

• left click: set low cut

• middle click: reset (auto cut levels)

• right click: set high cut

In addition, you can dynamically adjust the gap between low and high cuts by scrolling the wheel in the plot (i.e. the
“width” of the histogram plot curve). This has the effect of increasing or decreasing the contrast within the image. The
amount that is changed for each wheel click is set by the plugin configuration file setting scroll_pct. The default is
10%.

User Configuration
It is customizable using ~/.ginga/plugin_Histogram.cfg, where ~ is your HOME directory:

#
Histogram plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Histogram.cfg"

Switch to "move" mode after selection
draw_then_move = True

Number of bins for histogram
num_bins = 2048

Histogram color
hist_color = 'aquamarine'

(continues on next page)

116 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

Calculate extra statistics on box
show_stats = True

Controls formatting (width) of statistics numbers
maxdigits = 7

percentage to adjust cuts gap when scrolling in histogram
scroll_pct = 0.10

Crosshair

Crosshair is a simple plugin to draw crosshairs labeled with the position of the cross in pixels coordinates, WCS
coordinates, or data value at the cross position.

Plugin Type: Local
Crosshair is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
Select the appropriate type of output in the “Format” drop-down box in the UI: “xy” for pixel coordinates, “coords”
for the WCS coordinates, and “value” for the value at the crosshair position.

If “Drag only” is checked, then the crosshair is only updated when the cursor is clicked or dragged in the window. If
unchecked the crosshair is positioned by simply moving the cursor around the channel viewer window.

4.4. Plugins 117

ginga Documentation, Release 3.3.0

The “Cuts” tab contains a profile plot for the vertical and horizontal cuts represented by the visible box boundary
present when “Quick Cuts” is checked. This plot is updated in real time as the crosshair is moved. When “Quick Cuts”
is unchecked, the plot is not updated.

The size of the box is determined by the “radius” parameter.

The “Warn Level” control can be used to set a flux level above which a warning is indicated in the Cuts plot by a yellow
line and the background turning yellow. The warning is triggered if any value along either the X or Y cut exceeds the
warn level threshold.

The “Alert Level” control is similar, but represented by a red line and the background turning pink. The warning is
triggered if any value along either the X or Y cut exceeds the alert level threshold. Alerts take precedence over warnings.

Both the “Warn” and “Alert” features can be turned off by simply setting a blank value. They are turned off by default.

The cuts plot is interactive, but it really only makes sense to use that if “Drag only” is checked. You can press ‘x’ or
‘y’ in the plot window to toggle on and off the autoaxis scaling feature for either axis, and scroll in the plot to zoom in
the X axis (hold Ctrl down while scrolling to zoom the Y axis).

Crosshair provides a Pick plugin interaction feature: when the crosshair is over an object you can press ‘r’ in the channel
viewer window to have the Pick plugin invoked on that particular location. If a Pick is not open already on that channel,
it will be opened first.

User Configuration
It is customizable using ~/.ginga/plugin_Crosshair.cfg, where ~ is your HOME directory:

#
Crosshair plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Crosshair.cfg"

color of the crosshair
color = 'green'

text color of crosshair
text_color = 'skyblue'

box color indicating cut radius
box_color = 'aquamarine'

cut plot line colors for X and Y
quick_h_cross_color = '#7570b3'
quick_v_cross_color = '#1b9e77'

enable quick cuts plots by default
quick_cuts = False

force drag only by default
drag_only = False

set a warning level for the warning feature of the cuts plot
warn_level = None

set an alery level for the alert feature of the cuts plot
alert_level = None

(continues on next page)

118 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

set initial radius of the cuts box
cuts_radius = 15

4.4. Plugins 119

ginga Documentation, Release 3.3.0

Overlays

A plugin for generating color overlays
representing under- and over-exposure in the loaded image.

Plugin Type: Local
Overlays is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage

120 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Choose colors from the drop-down menus for the low-limit and/or high-limit (“Lo color” and “Hi color”, respectively).
Specify the limits for low and high values in the limit boxes (“Lo limit” and “Hi limit”, respectively). Set the opacity
of the overlays with a value between 0 and 1 in the “Opacity” box. Finally, press the “Redo” button.

The color overlay should show areas below the low limit with a low color and the areas above the high limit in the high
color. If you omit a limit (leave the box blank), that color won’t be shown in the overlay.

If a new image is selected for the channel, the overlays image will be recalculated based on the current parameters with
the new data.

WCSAxes

A plugin for generating WCS axes overlay in the loaded image.

Plugin Type: Local
WCSAxes is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
As long as image as a valid WCS, WCS axes will be displayed. Use plugin GUI or configuration file to customize axes
display.

It is customizable using ~/.ginga/plugin_WCSAxes.cfg, where ~ is your HOME directory:

#
WCSAxes plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_WCSAxes.cfg"

Color, style, and width of grid lines
linecolor = 'cyan'
linestyle = 'solid'
linewidth = 1

Alpha (opacity) of grid lines; 1=opaque, 0=transparent
alpha = 1

(continues on next page)

4.4. Plugins 121

ginga Documentation, Release 3.3.0

(continued from previous page)

Number of RA and DEC lines to draw
n_ra_lines = 10
n_dec_lines = 10

Show RA and DEC values of grid lines
show_label = True

Label font size
fontsize = 8

Label offset from grid lines (pixels)
label_offset = 4

TVMark

Mark points from file (non-interative mode) on an image.

Plugin Type: Local
TVMark is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
This plugin allows non-interactive marking of points of interest by reading in a file containing a table with RA and DEC
positions of those points. Any text or FITS table file that can be read by astropy.table is acceptable but user must
define the column names correctly in the plugin configuration file (see below). An attempt will be made to convert RA
and DEC values to degrees. If the unit conversion fails, they will be assumed to be in degrees already.

122 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Alternately, if the file has columns containing the direct pixel locations, you can read these columns instead by uncheck-
ing the “Use RADEC” box. Again, the column names must be correctly defined in the plugin configuration file (see
below). Pixel values can be 0- or 1-indexed (i.e., whether the first pixel is 0 or 1) and is configurable (see below). This
is useful when you want to mark the physical pixels regardless of WCS (e.g., marking hot pixels on a detector). RA
and DEC will still be displayed if the image has WCS information but they will not affect the markings.

To mark different groups (e.g., displaying galaxies as green circles and background as cyan crosses, as shown above):

1. Select green circle from the drop-down menus. Alternately, enter desired size or width.

2. Make sure “Use RADEC” box is checked, if applicable.

3. Using “Load Coords” button, load the file containing RA and DEC (or X and Y) positions for galaxies only.

4. Repeat Step 1 but now select cyan cross from the drop-down menus.

5. Repeat Step 2 but choose the file containing background positions only.

Selecting an entry (or multiple entries) from the table listing will highlight the marking(s) on the image. The highlight
uses the same shape and color, but a slightly thicker line.

You can also highlight all the markings within a region both on the image and the table listing by drawing a rectangle
on the image while this plugin is active.

Pressing the “Hide” button will hide the markings but does not clear the plugin’s memory; That is, when you press
“Show”, the same markings will reappear on the same image. However, pressing “Forget” will clear the markings both
from display and memory; That is, you will need to reload your file(s) to recreate the markings.

To redraw the same positions with different marking parameters, press “Forget” and repeat the steps above, as necessary.
However, if you simply wish to change the line width (thickness), pressing “Hide” and then “Show” after you entered
the new width value will suffice.

If images of very different pointings/dimensions are displayed in the same channel, markings that belong to one image
but fall outside another will not appear in the latter.

To create a table that this plugin can read, one can use results from the Pick plugin, in addition to creating a table by
hand, using astropy.table, etc.

Used together with TVMask, you can overlay both point sources and masked regions in Ginga.

It is customizable using ~/.ginga/plugin_TVMark.cfg, where ~ is your HOME directory:

#
TVMark plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_TVMark.cfg"

Marking type -- 'circle' or 'cross'
marktype = 'circle'

Marking color -- Any color name accepted by Ginga
markcolor = 'green'

Marking size or radius
marksize = 5

Marking line width (thickness)
markwidth = 1

Specify whether pixel values are 0- or 1-indexed
(continues on next page)

4.4. Plugins 123

ginga Documentation, Release 3.3.0

(continued from previous page)

pixelstart = 1

True -- Use 'ra' and 'dec' columns to extract RA/DEC positions. This option
uses image WCS to convert to pixel locations.
False -- Use 'x' and 'y' columns to extract pixel locations directly.
This does not use WCS.
use_radec = True

Columns to load into table listing (case-sensitive).
Whether RA/DEC or X/Y columns are used depend on associated GUI selection.
ra_colname = 'ra'
dec_colname = 'dec'
x_colname = 'x'
y_colname = 'y'
Extra columns to display; e.g., ['colname1', 'colname2']
extra_columns = []

TVMask

Display masks from file (non-interative mode) on an image.

Plugin Type: Local
TVMask is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage

124 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

This plugin allows non-interactive display of mask by reading in a FITS file, where non-zero is assumed to be masked
data.

To display different masks (e.g., some masked as green and some as pink, as shown above):

1. Select green from the drop-down menu. Alternately, enter desired alpha value.

2. Using “Load Mask” button, load the relevant FITS file.

3. Repeat (1) but now select pink from the drop-down menu.

4. Repeat (2) but choose another FITS file.

5. To display a third mask as pink too, repeat (4) without changing the drop-down menu.

Selecting an entry (or multiple entries) from the table listing will highlight the mask(s) on the image. The highlight
uses a pre-defined color and alpha (customizable below).

You can also highlight all the masks within a region both on the image and the table listing by drawing a rectangle on
the image while this plugin is active.

Pressing the “Hide” button will hide the masks but does not clear the plugin’s memory; That is, when you press “Show”,
the same masks will reappear on the same image. However, pressing “Forget” will clear the masks both from display
and memory; That is, you will need to reload your file(s) to recreate the masks.

To redraw the same masks with different color or alpha, press “Forget” and repeat the steps above, as necessary.

If images of very different pointings/dimensions are displayed in the same channel, masks that belong to one image but
fall outside another will not appear in the latter.

To create a mask that this plugin can read, one can use results from the Drawing plugin (press “Create Mask” after
drawing and save the mask using SaveImage), in addition to creating a FITS file by hand using astropy.io.fits,
etc.

Used together with TVMark, you can overlay both point sources and masked regions in Ginga.

It is customizable using ~/.ginga/plugin_TVMask.cfg, where ~ is your HOME directory:

#
TVMask plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_TVMask.cfg"

Mask color -- Any color name accepted by Ginga
maskcolor = 'green'

Mask alpha (transparency) -- 0=transparent, 1=opaque
maskalpha = 0.5

Highlighted mask color and alpha
hlcolor = 'white'
hlalpha = 1.0

4.4. Plugins 125

ginga Documentation, Release 3.3.0

Blink

Blink switches
through the images shown in a channel at a rate chosen by the user. Alternatively, it can switch between channels in
the main workspace. In both cases, the primary purpose is to compare and contrast the images (within a channel, or
across channels) visually within a short timescale – like blinking your eyes.

Plugin Type: Local or Global
Blink can be invoked either as a local plugin, in which case it cycles through the images in the channel, or as a global

126 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

plugin, in which case it cycles through the channels.

Local plugins are started from the “Operations” button, while global plugins are started from the “Plugins” menu.

Usage
Set the interval between image changes in terms of seconds in the box labeled “Interval”. Then, press “Start Blink” to
start the timed cycling, and “Stop Blink” to stop the cycling.

You can change the number in “Interval” and press Enter to dynamically change the cycle time while the cycle is
running.

It is customizable using ~/.ginga/plugin_Blink.cfg, where ~ is your HOME directory:

#
Blink plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Blink.cfg"

Blink channels instead of images within a channel
PLEASE NOTE: this option is DEPRECATED
blink_channels = False

the maximum interval for a blink
interval_max = 30.0

the minimum interval for a blink
interval_min = 0.25

LineProfile

A
plugin to graph the pixel values along a straight line bisecting a cube.

Plugin Type: Local

4.4. Plugins 127

ginga Documentation, Release 3.3.0

LineProfile is a local plugin, which means it is associated with a channel. An instance can be opened for each
channel.

Usage

Warning: There are no restrictions to what axes can be chosen. As such, the plot can be meaningless.

The LineProfile plugin is used for multidimensional (i.e., 3D or higher) images. It plots the values of the pixels at
the current cursor position through the selected axis; or if a region is selected, it plots the mean in each frame. This can
be used to create normal spectral line profiles. A marker is placed at the data point of the currently displayed frame.

Displayed X-axis is constructed using CRVAL*, CDELT*, CRPIX*, CTYPE*, and CUNIT* keywords from FITS header.
If any of the keywords are unavailabled, the axis falls back to NAXIS* values instead.

Displayed Y-axis is constructed using BTYPE and BUNIT. If they are not available, it simply labels pixel values as
“Signal”.

To use this plugin:

1. Select an axis.

2. Pick a point or draw a region using the cursor.

3. Use MultiDim to change step values of axes, if applicable.

It is customizable using ~/.ginga/plugin_LineProfile.cfg, where ~ is your HOME directory:

#
LineProfile plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_LineProfile.cfg"

Default mark type. This can be change in the GUI.
mark_type = 'point'

Properties of a point mark type. Radius can be change in Edit mode.
mark_radius = 10
mark_style='cross'

Mark color.
mark_color = 'cyan'

128 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

PixTable

PixTable provides a way to check or monitor the pixel values in a region.

Plugin Type: Local
PixTable is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Basic Use
In the most basic use, simply move the cursor around the channel viewer; an array of pixel values will appear in the
“Pixel Values” display in the plugin UI. The center value is highlighted, and this corresponds to the value under the
cursor.

You can choose a 3x3, 5x5, 7x7, or 9x9 grid from the left-most combobox control. It may help to adjust the “Font
Size” control to prevent having the array values cut off on the sides. You can also enlarge the plugin workspace to see
more of the table.

Note: The order of the value table shown will not necessarily match to the channel viewer if the images is flipped,
transposed, or rotated.

Using Marks
When you set and select a mark, the pixel values will be shown surrounding the mark instead of the cursor. There can
be any number of marks, and they are each noted with a numbered “X”. Simply change the mark drop down control to
select a different mark and see the values around it. The currently selected mark is shown with a different color than
the others.

The marks will stay in position even if a new image is loaded and they will show the values for the new image. In this
way you can monitor the area around a spot if the image is updating frequently.

4.4. Plugins 129

ginga Documentation, Release 3.3.0

If the “Pan to mark” checkbox is selected, then when you select a different mark from the mark control, the channel
viewer will pan to that mark. This can be useful to inspect the same spots in several different images, especially when
zoomed in tight to the image.

Note: If you change the mark control back to “None”, then the pixel table will again update as you move the cursor
around the viewer.

The “Caption” box can be used to set a text annotation that will be appended to the mark label when the next mark is
created. This can be used to label a feature in the image, for example.

Deleting Marks
To delete a mark, select it in the mark control and then press the button marked “Delete”. To delete all the marks, press
the button marked “Delete All”.

Moving Marks
When the “Move” radio button is checked, and a mark is selected, then clicking or dragging anywhere in the image
will move the mark to that location and update the pixel table. If no mark is currently selected then a new one will be
created and moved.

Drawing Marks
When the “Draw” radio button is checked, then clicking and dragging creates a new mark. The longer the draw, the
bigger radius of the “X”.

Editing Marks
When the “Edit” radio button is checked after a mark has been selected then you can drag the control points of the mark
to increase the radius of the arms of the X or you can drag the bounding box to move the mark. If the editing control
points are not shown, simply click on the center of a mark to enable them.

Special Keys
In “Move” mode the following keys are active: - “n” will place a new mark at the site of the cursor - “m” will move
the current mark (if any) to the site of the cursor - “d” will delete the current mark (if any) - “j” will select the previous
mark (if any) - “k” will select the next mark (if any)

User Configuration
It is customizable using ~/.ginga/plugin_PixTable.cfg, where ~ is your HOME directory:

#
PixTable plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_PixTable.cfg"

Default font
font = 'fixed'

Default font size
fontsize = 12

default size for mark point radius
mark_radius = 10

style of point to draw
mark_style = 'cross'

(continues on next page)

130 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

color of non-selected marks
mark_color = 'purple'

color of selected mark
select_color = 'cyan'

whether to update the pixel table when moving a mark around
drag_update = True

Preferences

Make changes to channel settings graphically in the UI.

Plugin Type: Local
Preferences is a local plugin, which means it is associated with a channel. An instance can be opened for each
channel.

Usage
The Preferences plugin sets the preferences on a per-channel basis. The preferences for a given channel are inherited
from the “Image” channel until they are explicitly set and saved using this plugin.

If “Save Settings” is pressed, it will save the settings to the user’s home Ginga folder so that when a channel with the
same name is created in future Ginga sessions it will obtain the same settings.

Color Distribution Preferences

Fig. 14: “Color Distribution” preferences.

The “Color Distribution” preferences control the preferences used for the data value to color index conversion that
occurs after cut levels are applied and just before final color mapping is performed. It concerns how the values between
the low and high cut levels are distributed to the color and intensity mapping phase.

The “Algorithm” control is used to set the algorithm used for the mapping. Click the control to show the list, or simply
scroll the mouse wheel while hovering the cursor over the control. There are eight algorithms available: linear, log,
power, sqrt, squared, asinh, sinh, and histeq. The name of each algorithm is indicative of how the data is mapped to
the colors in the color map. “linear” is the default.

Color Mapping Preferences
The “Color Mapping” preferences control the preferences used for the color map and intensity map, used during the
final phase of the color mapping process. Together with the “Color Distribution” preferences, these control the mapping
of data values into a 24-bpp RGB visual representation.

The “Colormap” control selects which color map should be loaded and used. Click the control to show the list, or
simply scroll the mouse wheel while hovering the cursor over the control.

4.4. Plugins 131

ginga Documentation, Release 3.3.0

Fig. 15: “Color Mapping” preferences.

The “Intensity” control selects which intensity map should be used with the color map. The intensity map is applied just
before the color map, and can be used to change the standard linear scale of values into an inverted scale, logarithmic,
etc.

Ginga comes with a good selection of color maps, but should you want more, you can add custom ones or, if
matplotlib is installed, you can load all the ones that it has. See “Customizing Ginga” for details.

Zoom Preferences

Fig. 16: “Zoom” preferences.

The “Zoom” preferences control Ginga’s zooming/scaling behavior. Ginga supports two zoom algorithms, chosen
using the “Zoom Alg” control:

• The “step” algorithm zooms the image inwards in discrete steps of 1X, 2X, 3X, etc. or outwards in steps of 1/2X,
1/3X, 1/4X, etc. This algorithm results in the least artifacts visually, but is a bit slower to zoom over wide ranges
when using a scrolling motion because more “throw” is required to achieve a large zoom change (this is not the
case if one uses of the shortcut zoom keys, such as the digit keys).

132 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

• The “rate” algorithm zooms the image by advancing the scaling at a rate defined by the value in the “Zoom Rate”
box. This rate defaults to the square root of 2. Larger numbers cause larger changes in scale between zoom levels.
If you like to zoom your images rapidly, at a small cost in image quality, you would likely want to choose this
option.

Note that regardless of which method is chosen for the zoom algorithm, the zoom can be controlled by holding down
Ctrl (coarse) or Shift (fine) while scrolling to constrain the zoom rate (assuming the default mouse bindings).

The “Stretch XY” control can be used to stretch one of the axes (X or Y) relative to the other. Select an axis with this
control and roll the scroll wheel while hovering over the “Stretch Factor” control to stretch the pixels in the selected
axis.

The “Scale X” and “Scale Y” controls offer direct access to the underlying scaling, bypassing the discrete zoom steps.
Here, exact values can be typed to scale the image. Conversely, you will see these values change as the image is zoomed.

The “Scale Min” and “Scale Max” controls can be used to place a limit on how much the image can be scaled.

The “Zoom Defaults” button will restore the controls to the Ginga default values.

Pan Preferences

Fig. 17: “Pan” preferences.

The “Pan” preferences control Ginga’s panning behavior.

The “Pan X” and “Pan Y” controls offer direct access to set the pan position in the image (the part of the image located
at the center of the window) – you can see them change as you pan around the image.

The “Center Image” button sets the pan position to the center of the image, as calculated by halving the dimensions in
X and Y.

The “Mark Center” check box, when checked, will cause Ginga to draw a small reticle in the center of the image. This
is useful for knowing the pan position and for debugging.

Transform Preferences
The “Transform” preferences provide for transforming the view of the image by flipping the view in X or Y, swapping
the X and Y axes, or rotating the image in arbitrary amounts.

The “Flip X” and “Flip Y” checkboxes cause the image view to be flipped in the corresponding axis.

The “Swap XY” checkbox causes the image view to be altered by swapping the X and Y axes. This can be combined
with “Flip X” and “Flip Y” to rotate the image in 90 degree increments. These views will render more quickly than
arbitrary rotations using the “Rotate” control.

The “Rotate” control will rotate the image view the specified amount. The value should be specified in degrees. “Rotate”
can be specified in conjunction with flipping and swapping.

The “Restore” button will restore the view to the default view, which is unflipped, unswapped, and unrotated.

4.4. Plugins 133

ginga Documentation, Release 3.3.0

Fig. 18: “Transform” preferences.

Auto Cuts Preferences

Fig. 19: “Auto Cuts” preferences.

The “Auto Cuts” preferences control the calculation of cut levels for the view when the auto cut levels button or key is
pressed, or when loading a new image with auto cuts enabled. You can also set the cut levels manually from here.

The “Cut Low” and “Cut High” fields can be used to manually specify lower and upper cut levels. Pressing “Cut
Levels” will set the levels to these values manually. If a value is missing, it is assumed to default to the whatever the
current value is.

Pressing “Auto Levels” will calculate the levels according to an algorithm. The “Auto Method” control is used to
choose which auto cuts algorithm used: “minmax” (minimum maximum values), “median” (based on median filtering),
“histogram” (based on an image histogram), “stddev” (based on the standard deviation of pixel values), or “zscale”
(based on the ZSCALE algorithm popularized by IRAF). As the algorithm is changed, the boxes under it may also
change to allow changes to parameters particular to each algorithm.

WCS Preferences

Fig. 20: “WCS” preferences.

The “WCS” preferences control the display preferences for the World Coordinate System (WCS) calculations used to
report the cursor position in the image.

134 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The “WCS Coords” control is used to select the coordinate system in which to display the result.

The “WCS Display” control is used to select a sexagesimal (H:M:S) readout or a decimal degrees readout.

New Image Preferences

Fig. 21: “New Image” preferences.

The “New Images” preferences determine how Ginga reacts when a new image is loaded into the channel. This includes
when an older image is revisited by clicking on its thumbnail in the Thumbs plugin pane.

The “Cut New” setting controls whether an automatic cut-level calculation should be performed on the new image, or
whether the currently set cut levels should be applied. The possible settings are:

• “on”: calculate a new cut levels always;

• “override”: calculate a new cut levels until the user overrides it by manually setting a cut levels, then turn “off”;
or

• “off”: always use the currently set cut levels.

Tip: The “override” setting is provided for the convenience of having automatic cut levels, while preventing a manually
set cuts from being overridden when a new image is ingested. When typed in the image window, the semicolon key
can be used to toggle the mode back to override (from “off”), while colon will set the preference to “on”. The Info
panel shows the state of this setting.

The “Zoom New” setting controls whether a newly visited image should be zoomed to fit the window. There are three
possible values: on, override, and off:

• “on”: the new image is always zoomed to fit;

• “override”: images are automatically fitted until the zoom level is changed manually, then the mode automatically
changes to “off”, or

• “off”: always use the currently set zoom levels.

Tip: The “override” setting is provided for the convenience of having an automatic zoom, while preventing a manually
set zoom level from being overridden when a new image is ingested. When typed in the image window, the apostrophe
(a.k.a. “single quote”) key can be used to toggle the mode back to “override” (from “off”), while quote (a.k.a. double
quote) will set the preference to “on”. The global plugin Info panel shows the state of this setting.

The “Center New” box, if checked, will cause newly visited images to always have the pan position reset to the center
of the image. If unchecked, the pan position is unchanged from the previous image.

4.4. Plugins 135

ginga Documentation, Release 3.3.0

The “Follow New” setting is used to control whether Ginga will change the display if a new image is loaded into the
channel. If unchecked, the image is loaded (as seen, for example, by its appearance in the Thumbs tab), but the display
will not change to the new image. This setting is useful in cases where new images are being loaded by some automated
means into a channel and the user wishes to study the current image without being interrupted.

The “Raise New” setting controls whether Ginga will raise the tab of a channel when an image is loaded into that
channel. If unchecked, then Ginga will not raise the tab when an image is loaded into that particular channel.

The “Create Thumbnail” setting controls whether Ginga will create a thumbnail for images loaded into that channel.
In cases where many images are being loaded into a channel frequently (e.g., a low frequency video feed), it may be
undesirable to create thumbnails for all of them.

General Preferences
The “Num Images” setting specifies how many images can be retained in buffers in this channel before being ejected. A
value of zero (0) means unlimited–images will never be ejected. If an image was loaded from some accessible storage
and it is ejected, it will automatically be reloaded if the image is revisited by navigating the channel.

The “Sort Order” setting determines whether images are sorted in the channel alphabetically by name or by the time
when they were loaded. This principally affects the order in which images are cycled when using the up/down “arrow”
keys or buttons, and not necessarily how they are displayed in plugins like “Contents” or “Thumbs” (which generally
have their own setting preference for ordering).

The “Use scrollbars” check box controls whether the channel viewer will show scroll bars around the edge of the viewer
frame.

Remember Preferences
When an image is loaded, a profile is created and attached to the image metadata in the channel. These profiles are
continuously updated with viewer state as the image is manipulated. The “Remember” preferences control which parts
of these profiles are restored to the viewer state when the image is navigated to in the channel:

• “Restore Scale” will restore the zoom (scale) level

• “Restore Pan” will restore the pan position

• “Restore Transform” will restore any flip or swap axes transforms

• “Restore Rotation” will restore any rotation of the image

• “Restore Cuts” will restore any cut levels for the image

• “Restore Scale” will restore any coloring adjustments made (including color map, color distribution, con-
trast/stretch, etc.)

136 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Catalogs

4.4. Plugins 137

ginga Documentation, Release 3.3.0

A plugin for plotting object locations from a catalog on an image.

Plugin Type: Local
Catalogs is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Note: To use Catalogs, it is necessary to install the astroquery package.

Warning: Configuration of Catalogs via ginga_config.py technique in Ginga 3.2 or later is not officially
supported and may not work as in previous releases. See the new user configuration instructions below.

Usage
Fetching an image

• By name resolver: Using the Name Server box, choose a server and type a name into the “Name” field. Press
“Search name”. If the name is resolved, the “ra” and “dec” fields in the Image Server box will be populated.
Select a server, adjust width and/or height, and press “Get Image”.

• By existing image in the channel: Draw a shape on the displayed image (“rectangle” or “circle” can be chosen at
the bottom of the plugin GUI) and adjust search parameters as desired. When you are ready, press “Get Image”
to perform the search.

Note: It can take some time for the image download to finish, depending on the size of the field, network conditions,
etc. Normally, if the search or download fails then an error will be popped up in the Errors plugin.

If the image is downloaded successfully it should appear in the channel viewer.

138 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fetching and plotting objects from catalogs
To plot objects, the Catalogs plugin needs an image with a valid WCS loaded into the channel. You can either load
your own image or fetch one from an image server as described in “Fetching an image” above.

Choosing a center:

• By name resolver: Using the Name Server box, choose a server and type a name into the “Name” field. Press
“Search name”. If the name is resolved, the “ra” and “dec” fields in the Catalog Server box will be populated.
Select a server, adjust width and/or height, and press “Search catalog”.

• By existing image in the channel: Draw a shape on the displayed image (“rectangle” or “circle” can be chosen
at the bottom of the plugin GUI) and adjust search parameters as desired. When you are ready, press “Search
catalog” to perform the search.

Note: It can take some time for the search result to finish, depending on the size of the field, network conditions, etc.
Normally, if the search fails then an error will be popped up in the Errors plugin.

When search results are available, they will be displayed on the image and also listed in a table on the plugin GUI. You
can click on either the table or the image to highlight selection.

User Configuration
It is customizable using ~/.ginga/plugin_Catalogs.cfg, where ~ is your HOME directory:

#
Catalogs plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Catalogs.cfg"

draw_type = 'circle'

select_color = 'skyblue'

color_outline = 'aquamarine'

click_radius = 10

NAME SOURCES
Name resolvers for astronomical object names
#
Format: list of dicts
Each dict defines a source, and has the following fields:
shortname: str
the short name appearing in the control for selecting a source
in the plugin
#
fullname: str
the full name, should correspond *exactly* with the name required
by astroquery.vo_conesearch "catalog" parameter
#
type: str
should be "astroquery.names" for an astroquery.names function
#

(continues on next page)

4.4. Plugins 139

ginga Documentation, Release 3.3.0

(continued from previous page)

name_sources = [
{'shortname': "SIMBAD", 'fullname': "SIMBAD",
'type': 'astroquery.names'},
{'shortname': "NED", 'fullname': "NED",
'type': 'astroquery.names'},
]

CATALOG SOURCES
#
Format: list of dicts
Each dict defines a source, and has the following fields:
shortname: str
the short name appearing in the control for selecting a source
in the plugin
#
fullname: str
the full name, should correspond *exactly* with the name required
by astroquery.vo_conesearch "catalog" parameter
#
type: str
should be "astroquery.vo_conesearch" for an astroquery.vo_conesearch
function
#
mapping: dict
a nested dict providing the mapping for the return results to the GUI,
in terms of field name to Ginga table.
There must be keys for 'id', 'ra' and 'dec'. 'mag', if present, can be
a list of field names that define magnitudes of the elements in various
wavelengths.
#
catalog_sources = [
{'shortname': "GSC 2.3",
'fullname': "Guide Star Catalog 2.3 Cone Search 1",
'type': 'astroquery.vo_conesearch',
'mapping': {'id': 'objID', 'ra': 'ra', 'dec': 'dec', 'mag': ['Mag']}},
{'shortname': "USNO-A2.0 1",
'fullname': "The USNO-A2.0 Catalogue (Monet+ 1998) 1",
'type': 'astroquery.vo_conesearch',
'mapping': {'id': 'USNO-A2.0', 'ra': 'RAJ2000', 'dec': 'DEJ2000',
'mag': ['Bmag', 'Rmag']}},
{'shortname': "2MASS 1",
'fullname': "Two Micron All Sky Survey (2MASS) 1",
'type': 'astroquery.vo_conesearch',
'mapping': {'id': 'htmID', 'ra': 'ra', 'dec': 'dec',
'mag': ['h_m', 'j_m', 'k_m']}},
]

IMAGE SOURCES
#
Format: list of dicts

(continues on next page)

140 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

Each dict defines a source, and has the following fields:
shortname: str
the string that should correspond *exactly* with the name required
by astroquery.skyview "survey" parameter for get_image_list()
#
fullname: str
the full name, mostly descriptive
#
type: str
should be "astroquery.image"
#
source: str
should be "skyview"
#
#
image_sources = [
{'shortname': "DSS",
'fullname': "Digital Sky Survey 1",
'type': 'astroquery.image',
'source': 'skyview'},
{'shortname': "DSS1 Blue",
'fullname': "Digital Sky Survey 1 Blue",
'type': 'astroquery.image',
'source': 'skyview'},
{'shortname': "DSS1 Red",
'fullname': "Digital Sky Survey 1 Red",
'type': 'astroquery.image',
'source': 'skyview'},
{'shortname': "DSS2 Red",
'fullname': "Digital Sky Survey 2 Red",
'type': 'astroquery.image',
'source': 'skyview'},
{'shortname': "DSS2 Blue",
'fullname': "Digital Sky Survey 2 Blue",
'type': 'astroquery.image',
'source': 'skyview'},
{'shortname': "DSS2 IR",
'fullname': "Digital Sky Survey 2 Infrared",
'type': 'astroquery.image',
'source': 'skyview'},
]

4.4. Plugins 141

ginga Documentation, Release 3.3.0

Mosaic

Plugin to create an image mosaic by constructing a composite image.

Plugin Type: Local
Mosaic is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage

Warning: This can be very memory intensive.

This plugin is used to automatically build a mosaic image in the channel using images provided by the user (e.g., using
FBrowser). The position of an image on the mosaic is determined by its WCS without distortion correction. This
is meant as a quick-look tool, not a replacement for image drizzling that takes account of image distortion, etc. The
mosaic only exists in memory but you can save it out to a FITS file using SaveImage.

When a mosaic falls out of memory, it is no longer accessible in Ginga. To avoid this, you must configure your session
such that your Ginga data cache is sufficiently large (see “Customizing Ginga” in the manual).

To create a new mosaic, set the FOV and drag files onto the display window. Images must have a working WCS. The
first image’s WCS will be used to orient the other tiles.

Difference from `Collage` plugin
• Allocates a single large array to hold all the mosaic contents

142 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

• Slower to build, but can be quicker to manipulate large resultant images

• Can save the mosaic as a new data file

• Fills in values between tiles with a fill value (can be NaN)

It is customizable using ~/.ginga/plugin_Mosaic.cfg, where ~ is your HOME directory:

#
Mosaic plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Mosaic.cfg"

annotate images with their names
annotate_images = False

default FOV for new mosaics
fov_deg = 0.2

Try to match backgrounds
match_bg = False

Number of pixels to trim from edges
trim_px = 0

Merge (coadd pixels) instead of overlapping tiles
merge = False

Number of threads to devote to opening images
num_threads = 4

dropping a new file or files starts a new mosaic
drop_creates_new_mosaic = False

Set to True when you want to mosaic image HDUs in a file
mosaic_hdus = False

Limit on skew between X and Y axis after warping tile acceptable for mosaic
skew_limit = 0.1

Allow the mosaic image to expand if new tiles are added that
aren't in the region
allow_expand = True

When expanding an image, pad on a side by this many deg
expand_pad_deg = 0.01

Maximum delta from center of image (in deg) beyond which new images
are assumed to start a new mosaic. Set to None if you never want this
bahavior
max_center_deg_delta = 2.0

Allow mosaic images to create thumbnail entries
make_thumbs = False

(continues on next page)

4.4. Plugins 143

ginga Documentation, Release 3.3.0

(continued from previous page)

Reuse existing mosaic for new mosaic (faster)
reuse_image = False

Collage

Plugin to create an image mosaic via the collage method.

Plugin Type: Local
Collage is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
This plugin is used to automatically create a mosaic collage in the channel viewer using images provided by the user.
The position of an image on the collage is determined by its WCS without distortion correction. This is meant as a
quick-look tool, not a replacement for image drizzling that takes account of image distortion, etc.

The collage only exists as a plot on the Ginga canvas. No new single image is actually built (if you want that, see the
“Mosaic” plugin). Some plugins that expect to operate on single images may not work correctly with a collage.

To create a new collage, click the “New Collage” button and drag files onto the display window (e.g. files can be
dragged from the FBrowser plugin). Images must have a working WCS. The first image processed will be loaded
and its WCS will be used to orient the other tiles. You can add new images to an existing collage simply by dragging
addtional files.

Controls

144 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Check the “Collage HDUs” button to have Collage attempt to plot all the image HDUs in a dragged file instead of
just the first found one.

Check “Label Images” to have the plugin draw the name of each image over each plotted tile.

If “Match bg” is checked, the background of each tile is adjusted relative to the median of the first tile plotted (a kind
of rough smoothing).

The “Num Threads” box assigns how many threads will be used from the thread pool to load the data. Using several
threads will usually speed up loading of many files.

Difference from `Mosaic` plugin
• Doesn’t allocate a large array to hold all the mosaic contents

• No need to specify output FOV or worry about it

• Can be quicker to show result (depends a bit on constituent images)

• Some plugins will not work correctly with a collage, or will be slower

• Cannot save the collage as a data file (although you can use “ScreenShot”)

It is customizable using ~/.ginga/plugin_Collage.cfg, where ~ is your HOME directory:

#
Collage plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Collage.cfg"

Set to True when you want to collage image HDUs in a file
collage_hdus = False

annotate images with their names
annotate_images = False

Try to match backgrounds
match_bg = False

Number of threads to devote to opening images
num_threads = 4

Drawing

A plugin for drawing canvas forms (overlaid graphics).

Plugin Type: Local
Drawing is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
This plugin can be used to draw many different shapes on the image display. When it is in “draw” mode, select a shape
from the drop-down menu, adjust the shape’s parameters (if needed), and draw on the image by using left mouse button.
You can choose to draw in pixel or WCS space.

To move or edit an existing shape, set the plugin on “edit” or “move” mode, respectively.

To save the drawn shape(s) as mask image, click the “Create Mask” button and you will see a new mask image created
in Ginga. Then, use SaveImage plugin to save it out as single-extension FITS. Note that the mask will take the size of

4.4. Plugins 145

ginga Documentation, Release 3.3.0

the displayed image. Therefore, to create masks for different image dimensions, you need to repeat the steps multiple
times.

FBrowser

A plugin for browsing the local filesystem and loading files.

Plugin Type: Global or Local
FBrowser is a hybrid global/local plugin, which means it can be invoked in either fashion. If invoked as a local plugin
then it is associated with a channel, and an instance can be opened for each channel. It can also be opened as a global
plugin.

Usage
Navigate the directory tree until you come to the location files you want to load. You can double click a file to load it
into the associated channel, or drag a file into a channel viewer window to load it into any channel viewer.

Multiple files can be selected by holding down Ctrl (Command on Mac), or Shift-clicking to select a contiguous range
of files.

You may also enter full path to the desired image(s) in the text box such as /my/path/to/image.fits, /my/path/
to/image.fits[ext], or /my/path/to/image*.fits[extname,*].

Because it is a local plugin, FBrowser will remember its last directory if closed and then restarted.

It is customizable using ~/.ginga/plugin_FBrowser.cfg, where ~ is your HOME directory:

#
FBrowser plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_FBrowser.cfg"

Set to a specific directory to choose a starting point for file exploration.
If None is given, it defaults to your HOME.
home_path = None

This controls whether the plugin scans the FITS headers to create the
listing (slow for large numbers of files)
scan_fits_headers = False

If the number of files in the listing is greater than this, don't do
a scan on the headers
scan_limit = 100

if scan_fits_headers is True, then the keywords provides a map between
attributes and FITS header keywords to fetch from the header
keywords = [('Object', 'OBJECT'), ('Date', 'DATE-OBS'), ('Time UT', 'UT')]

columns lists the column headers and attributes to show in the listing.
If you want to include FITS keywords, be sure to include the attributes
defined in the keywords preference (i.e., 'Time UT', 'Object')
columns = [('Type', 'icon'), ('Name', 'name'), ('Size', 'st_size_str'), ('Mode', 'st_
→˓mode_oct'), ('Last Changed', 'st_mtime_str')]

If True, color every other row in alternating shades to improve
readability of long tables

(continues on next page)

146 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

color_alternate_rows = True

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

Compose

A plugin for composing RGB images from constituent monochrome images.

Plugin Type: Local
Compose is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
Start the Compose plugin from the “Operation->RGB” (below) or “Plugins->RGB” (above) menu. The tab should show
up under the “Dialogs” tab in the viewer to the right as “IMAGE:Compose”.

1. Select the kind of composition you want to make from the “Compose Type” drop down: “RGB” for composing
three monochrome images into a color image, “Alpha” to compose a series of images as layers with different
alpha values for each layer.

2. Press “New Image” to start composing a new image.

For RGB composition
1. Drag your three constituent images that will make up the R, G, and B planes to the “Preview” window – drag

them in the order R (red), G (green), and B (blue). Alternatively, you can load the images into the channel viewer
one by one and after each one pressing “Insert from Channel” (similarly, do these in the order of R, G, and B).

In the plugin GUI, the R, G, and B images should show up as three slider controls in the “Layers” area of the plugin,
and the Preview should show a low resolution version of how the composite image looks with the sliders set.

2. Play with the alpha levels of each layer using the sliders in the Compose plugin; as you adjust a slider the preview
image should update.

3. When you see something you like, you can save it to a file using the “Save As” button (use “jpeg” or “png” as
the file extension), or insert it into the channel using the “Save to Channel” button.

For Alpha composition
For Alpha-type composition the images are just combined in the order shown in the stack, with Layer 0 being the
bottom layer, and successive layers stacked on top. Each layer’s alpha level is adjustible by a slider in the same manner
as discussed above.

1. Drag your N constituent images that will make up the layers to the “Preview” window, or load the images into
the channel viewer one by one and after each one pressing “Insert from Channel” (the first image will be at the
bottom of the stack–layer 0).

2. Play with the alpha levels of each layer using the sliders in the Compose plugin; as you adjust a slider the preview
image should update.

3. When you see something you like, you can save it to a file using the “Save As” button (use “fits” as the file
extension), or insert it into the channel using the “Save to Channel” button.

General Notes
• The preview window is just a ginga widget, so all the usual bindings apply; you can set color maps, cut levels,

etc. with the mouse and key bindings.

4.4. Plugins 147

ginga Documentation, Release 3.3.0

Fig. 22: Composing an RGB Image.

148 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Fig. 23: Alpha-composing an image.

PlotTable

A plugin to display basic plot for any two selected columns in a table.

4.4. Plugins 149

ginga Documentation, Release 3.3.0

Plugin Type: Local
PlotTable is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
PlotTable is a plugin designed to plot any two selected columns for a given FITS table HDU (can be accessed via
MultiDim). For masked columns, masked data is not shown (even if only one of the (X, Y) pair is masked). It is
meant as a way to quickly look at table data and not for detailed scientific analysis.

It is customizable using ~/.ginga/plugin_PlotTable.cfg, where ~ is your HOME directory:

#
PlotTable plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_PlotTable.cfg"

matplotlib options for plotted line
linewidth = 1
linestyle = '-'
linecolor = 'blue'

matplotlib options for markers
markersize = 6
markerwidth = 0.5
markerstyle = 'o'
markercolor = 'red'

Show markers (can also be set in GUI)
show_marker = True

Table column numbers to plot (can also be set in GUI).
0 = row indices, not the first table column
x_index = 1
y_index = 2

Output file suffix (as accepted by matplotlib)
file_suffix = '.png'

Pipeline

Simple data processing pipeline plugin for Ginga.

Plugin Type: Local
Pipeline is a local plugin, which means it is associated with a channel. An instance can be opened for each channel.

Usage
It is customizable using ~/.ginga/plugin_Pipeline.cfg, where ~ is your HOME directory:

#
Pipeline plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pipeline.cfg"

num_threads = 4

150 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

ScreenShot

Capture PNG or JPEG images of the channel viewer image.

Usage
1. Select the RGB graphics type for the snap from the “Type” combo box.

2. Press “Snap” when you have the channel image the way you want to capture it.

A copy of the RGB image will be loaded into the ScreenShot viewer. You can pan and zoom within the ScreenShot
viewer like a normal Ginga viewer to examine detail (e.g., see the magnified difference between JPEG and PNG for-
mats).

3. Repeat (1) and (2) until you have the image you want.

4. Enter a valid path for a new file into the “Folder” text box.

5. Enter a valid name for a new file into the “Name” text box. There is no need to add the file extension; it will be
added, if needed.

6. Press the “Save” button. The file will be saved where you specified.

Notes
• PNG offers less artifacts for overlaid graphics, but files are larger than JPEG.

• The “Center” button will center the snap image; “Fit” will set the zoom to fit it to the window; and “Clear” will
clear the image. Press “Full” to zoom to 100% pixels (1:1 scaling).

• The “Screen size” checkbox (checked by default) will save the image at exactly the size of the channel viewer
window. To save at a different size, uncheck this box, and set the size via the “Width” and “Height” boxes.

4.4. Plugins 151

ginga Documentation, Release 3.3.0

• The “Lock aspect” feature only works if “Screen size” is unchecked; if enabled, then changing width or height
will alter the other parameter in order to maintain the aspect ratio shown in the “Aspect” box.

4.5 Customizing Ginga

One of the primary guiding concepts behind the Ginga project is to provide convenient ways to build custom viewers.
The reference viewer embodies this concept through the use of a flexible layout engine and the use of plugins to
implement all the major user interface features. By modifying or replacing the layout and adding, subclassing or
removing plugins you can completely change the look, feel and operation of the reference viewer.

This chapter explains how you can customize the Ginga reference viewer in various ways, as a user or a developer.

4.5.1 Configuration Options

Ginga examines a configuration directory on startup to check for any configuration files or customization of the default
behavior.

Note: The configuration area is determined first by examining the command line option --basedir. If that is not set,
then the environment variable GINGA_HOME is checked. If that is not set, then $HOME/.ginga (Mac OS X, Linux) or
$HOMEDRIVE:$HOMEPATH\\.ginga (Windows) will be used.

Examples of the types of configuration files with comments describing the effects of the parameters can be found in
.../ginga/examples/configs.

The config files that end in .cfg use a stripped down Pythonic format consisting of comments, blank lines and keyword
= value pairs, where values are specified using Python literal syntax.

General Config Files

There is general top-level configuration file general.cfg in the configuration area. You can find an example in the
examples area described above.

Binding Config File

One configuration file that many users will be interested in is the one controlling how keyboard and mouse/touch
bindings are assigned. This is handled by the configuration file bindings.cfg. Several examples are stored in .../
ginga/examples/bindings, including an example for users familiar with the ds9 mouse controls, and an example
for users using a touchpad without a mouse (pinch zoom and scroll panning). Simply copy the appropriate file to your
Ginga settings area as bindings.cfg.

152 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

Plugin Config Files

Many of the plugins have their own configuration file, with preferences that are only changed via that file. You can
copy an example configuration file to your Ginga settings area and change the settings to your liking.

Here is an example of a plugin configuration file for the Ruler plugin:

#
Ruler plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Ruler.cfg"

Show plumb lines or not
show_plumb = True

Show end values or not (end values are shown in the UI boxes,
regardless)
show_ends = True

Color for a drawn ruler
rule_color = 'green'

Color used when drawing
draw_color = 'cyan'

Units of distance. Choices are 'arcmin', 'degrees' or 'pixels';
the first two require a working WCS in the image.
units = 'arcmin'

The unit for showing the angle of the ruler.
Choices are 'degrees' or 'radians'
angle_unit = 'degrees'

Usually it is sufficient to simply close the plugin and open it again to pick up any settings changes, but some changes
may require a viewer restart to take effect.

Channel Config Files

Channels also use configuration files to store many different settings for the channel viewer windows. When a channel
is created, the reference viewer looks to see if there is a configuration file for that channel in the configuration area;
if so, the settings therein are used to configure it. If not, the settings for the generic startup channel “Image” are used
to configure the new channel. The “Preferences” plugin can be used to set many of the channel settings. If you set
these for the “Image” channel and use the “Save” button, other channels will inherit them. You can also manually copy
the example file from .../ginga/examples/configs/channel_Image.cfg to your configuration area and edit it
if you prefer.

4.5. Customizing Ginga 153

ginga Documentation, Release 3.3.0

4.5.2 Customizing the Layout

Ginga has a flexible table-driven layout scheme for dynamically creating workspaces and mapping the available plugins
to workspaces. This layout can be specified with a Python structure (layout) in the configuration area. If there is no
file initially, Ginga will use the built in default layout. Ginga will will update its window size, position and some layout
information to the layout file when the program is closed, creating a new custom layout. Upon a subsequent startup
Ginga will attempt to restore the window to the saved configuration.

Note: The name of the layout file is set in the general configuration file (general.cfg) as the value for layout_file.
Set it to “layout.json” if you prefer to use the JSON format or “layout” if you prefer to use the Python format (the default).

Note: If you don’t want Ginga to remember your changes to the window size or position, you can add the option
save_layout = False to your general configuration file. Ginga will still read the layout from the file (if it ex-
ists–otherwise it will use the default, built-in layout), but will not update it when closing.

Note: Invoking the program with the --norestore option prevents it from reading the saved layout file, and forces
use of the internal default layout table. This may be needed in some cases when the layout changes in an incompatible
way between when the program was last stopped and when it was started again.

Format of the Layout Table

The table consists of a list containing nested lists. Each list represents a container or a non-container endpoint, and has
the following format:

[type config-dict optional-content0 ... optional-contentN]

The first item in a list indicates the type of the container or object to be constructed. The following types are available:

• seq: defines a sequence of top-level windows to be created

• hpanel: a horizontal panel of containers, with handles to size them

• vpanel: a vertical panel of containers, with handles to size them

• hbox: a horizontal panel of containers of fixed size

• vbox: a vertical panel of containers of fixed size

• ws: a workspace that allows a plugin or a channel viewer to be loaded into it. A workspace can be configured
in four ways: as a tabbed notebook (wstype="tabs"), as a stack (wstype="stack"), as an MDI (Multiple
Document Interface, wstype="mdi") or a grid (wstype="grid").

In every case the second item in the sublist is a dictionary that provides some optional parameters that modify the
characteristics of the widget. If there is no need to override the default parameters the dictionary can simply be empty.
All types of containers honor the following parameters in this dict:

• width: can specify a desired width in pixels for the container.

• height: can specify a desired height in pixels for the container.

• name: specifies a mapping of a name to the created container widget. The name is important especially for
workspaces, as they may be referred to as an output destination when registering plugins.

154 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The optional third and following items in a list are specifications for nested content. The format for nested content
depends on the type of the container:

• seq, hpanel and vpanel types expect the nested content items to be lists, as described above.

• hbox and vbox content items can be lists (as described above) or dict s. A vbox dict should have a row value
and optionally a stretch value; an hbox dict should have a col value and optionally a stretch value. The
row and col values should be lists as described above.

• The ws (workspace) type takes one optional content item, which should be a sublist containing 2-item lists (or
tuples) with the format (name, content), where content is a list as described above. The name is used to
identify each content item in the way appropriate for the workspace type, whether that is a notebook tab, MDI
window titlebar, etc.

Here is the standard layout (Python format), as an example:

['seq',
{},
['vbox',
{'height': 700, 'name': 'top', 'width': 1400},
{'row': ['hbox', {'name': 'menu'}], 'stretch': 0},
{'row': ['hpanel',

{'name': 'hpnl'},
['ws',
{'group': 2,
'height': -1,
'name': 'left',
'width': 300,
'wstype': 'tabs'},
[('Info',
['vpanel',
{},
['ws',
{'group': 3,
'height': 250,
'name': 'uleft',
'wstype': 'stack'}],

['ws',
{'group': 3,
'height': 330,
'name': 'lleft',
'wstype': 'tabs'}]])]],

['vbox',
{'name': 'main', 'width': 600},
{'row': ['ws',

{'default': True,
'group': 1,
'name': 'channels',
'use_toolbar': True,
'wstype': 'tabs'}],

'stretch': 1},
{'row': ['ws', {'group': 99, 'name': 'cbar', 'wstype': 'stack'}],
'stretch': 0},
{'row': ['ws', {'group': 99, 'name': 'readout', 'wstype': 'stack'}],
'stretch': 0},

(continues on next page)

4.5. Customizing Ginga 155

ginga Documentation, Release 3.3.0

(continued from previous page)

{'row': ['ws',
{'group': 99, 'name': 'operations', 'wstype': 'stack'}],

'stretch': 0}],
['ws',
{'group': 2,
'height': -1,
'name': 'right',
'width': 400,
'wstype': 'tabs'},
[('Dialogs',
['ws', {'group': 2, 'name': 'dialogs', 'wstype': 'tabs'}])]]],

'stretch': 1},
{'row': ['ws',

{'group': 2, 'height': 40, 'name': 'toolbar', 'wstype': 'stack'}],
'stretch': 0},
{'row': ['hbox', {'name': 'status'}], 'stretch': 0}]]

In the above example, we define a top-level window consisting of a vbox (named “top”) with 4 layers: a hbox (“menu”),
hpanel (“hpnl”), a workspace (“toolbar”) and another hbox (“status”). The main horizontal panel (“hpnl”) has three
containers: a workspace (“left”), a vbox (“main”) and a workspace (“right”). The “left” workspace is pre-populated
with an “Info” tab containing a vertical panel of two workspaces: “uleft” and “lleft” (upper and lower left). The “right”
workspace is pre-populated with a “Dialogs” tab containing an empty workspace. The “main” vbox is configured with
four rows of workspaces: “channels”, “cbar”, “readout” and “operations”.

Note: The workspace that has as a configuration option default: True (in this example, “channels”) will be used
as the default workspace where new channels should be created.

4.5.3 Customizing the set of plugins

In the configuration directory, the presence of a file plugins.json will override the built-in configuration of plugins.
The file format is a JSON array containing JSON objects, each of which configures a plugin. Example:

[
{

"__bunch__": true,
"module": "Info",
"tab": "Synopsis",
"workspace": "lleft",
"start": true,
"hidden": true,
"category": "System",
"menu": "Info [G]",
"ptype": "global"

},
...

]

The keys for each object are defined as follows:

• __bunch__: should be present and set to true to force deserialization to a Bunch.

• module: The name of the module in the $PYTHONPATH containing the plugin.

156 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

• class: if present, indicates the name of the class within the module that denotes the plugin (if not present the
class is assumed to be named identically to the module).

• tab: the name that the plugin should appear as when opened in a workspace (usually as a tab, but it depends on
the type of workspace). Often the same name as the class, but can be different. If not present, defaults to the
class or module name of the plugin.

• workspace: the name of the workspace defined in the layout file (or default layout) where the plugin should be
started (see section below on workspace customization).

• start: true if the module is of the global type and should be started at program startup. Defaults to false.

• hidden: true if the plugin should be hidden from the “Operation” and “Plugins” menus. Often paired with
hidden being true for plugins that are considered to be a necessary part of continuous operation from program
startup to shutdown. Defaults to false.

• category: an arbitrary organizational name under which plugins are organized in the Operation and Plugins
menus.

• menu: a name for how the plugin should appear under the category in the menu structure. The convention is to
append “[G]” if it is a global plugin.

• ptype: either “local” or “global”, depending on whether the plugin is a local or global one.

• optray: to prevent a control icon from appearing in the Operations plugin manager tray specify false. The
default for non-hidden plugins is true and for hidden plugins false.

• enabled: false to disable the plugin from being loaded.

See the standard set of plugins in .../ginga/examples/layouts/standard/plugins.json

Custom plugin directory

If there is a plugins directory in the configuration area, it is added to the PYTHONPATH for the purpose of loading
plugins. You can put plugin modules in this directory, and then add entries to the plugins.json file described above
to add new, custom plugins.

4.5.4 Customizing the Reference Viewer (with Python) During Initialization

For the ultimate flexibility, the reference viewer can be customized during viewer initialization using a Python module
called ginga_config, which can be anywhere in the user’s Python import path, including in the Ginga configuration
folder described above.

Specifically, this file will be imported and two methods will be run if defined: pre_gui_config(ginga_shell) and
post_gui_config(ginga_shell). The parameter to each function is the main viewer shell. These functions can be
used to define a different viewer layout, add or remove plugins, add menu entries, add custom image or star catalogs,
etc. We will refer back to these functions in the sections below.

4.5. Customizing Ginga 157

ginga Documentation, Release 3.3.0

Workspace configuration

You can create a layout table (as described above in “Customizing the Workspace”) as a Python data structure, and then
replace the default layout table in the pre_gui_config() method described above:

my_layout = [
...
]

def pre_gui_config(ginga_shell):
...

ginga_shell.set_layout(my_layout)

If done in the pre_gui_config() method (as shown) the new layout will be the one that is used when the GUI is
constructed. See the default layout in ~ginga.rv.main as an example.

Start Plugins and Create Channels

You can create channels and start plugins using the post_gui_config() method.

A plugin can be started automatically in post_gui_config() using the start_global_plugin() or
start_local_plugin() methods, as appropriate:

def post_gui_config(ginga_shell):
Auto start global plugins
ginga_shell.start_global_plugin('Zoom')
ginga_shell.start_global_plugin('Header')

Auto start local plugin
ginga_shell.add_channel('Image')
ginga_shell.start_local_plugin('Image', 'Histogram', None)

Alternately, you can also start plugins via the command line interface using --plugins and -modules for local and
global plugins, respectively. To load multiple plugins at once, use a comma-separated list. For example:

ginga --plugins=MyLocalPlugin,Imexam --modules=MyGlobalPlugin

Adding Plugins

A plugin can be added to the reference viewer in pre_gui_config() using the add_plugin() method with a speci-
fication (“spec”) for the plugin:

from ginga.misc.Bunch import Bunch

def pre_gui_config(ginga_shell):
...

spec = Bunch(module='DQCheck', klass='DQCheck', workspace='dialogs',
category='Utils', ptype='local')

ginga_shell.add_plugin(spec)

158 Chapter 4. User’s Manual

ginga Documentation, Release 3.3.0

The above call would try to load a local plugin called “DQCheck” from a module called “DQCheck”. When invoked
from the Operations menu it would occupy a spot in the “dialogs” workspace (see layout discussion above).

Disabling Plugins

Both local and global plugins can be disabled (thus, not shown in the reference viewer) using the --disable-plugins
option in the command line interface. To remove multiple plugins at once, use a comma-separated list. For example:

ginga --disable-plugins=Zoom,Compose

Alternately, plugins can also be disabled via general.cfg configuration file. For example:

disable_plugins = "Zoom,Compose"

Finally, if you are using a custom “plugins.json” file as described above, you can simply set the enabled attribute to
False in the JSON object for that plugin in the file.

Some plugins, like Operations, when disabled, may result in inconvenient GUI experience.

4.5.5 Making a Custom Startup Script

You can make a custom startup script to make the same reference viewer configuration available without relying on a
custom set of startup files or the ginga_config module. To do this we make use of the main module:

import sys
from argparse import ArgumentParser

from ginga.rv.main import ReferenceViewer

define your custom layout
my_layout = [...]

define your custom plugin list
plugins = [...]

if __name__ == "__main__":
viewer = ReferenceViewer(layout=my_layout)
add plugins
for spec in plugins:

viewer.add_plugin(spec)

argprs = ArgumentParser(description="Run my custom viewer.")
viewer.add_default_options(argprs)
(options, args) = argprs.parse_known_args(sys_argv[1:])

viewer.main(options, args)

4.5. Customizing Ginga 159

ginga Documentation, Release 3.3.0

160 Chapter 4. User’s Manual

CHAPTER

FIVE

DEVELOPER’S MANUAL

This section provides some resources for developers interested in using Ginga as a visualization solution for their own
software.

5.1 Image Data Wrappers

The image viewer can load data in a number of formats, but all formats are wrapped with a class that corresponds
to the model part of the model-view-controller design used by Ginga. These wrappers make the data accessible in a
common interface for the image viewer. The most common wrappers are AstroImage and RGBImage, for single band
(i.e. “monchromatic”) and multi-band (i.e. “RGB”) data, respectively.

5.1.1 AstroImage

An AstroImage combines image data with metadata (including keywords) and optionally, world coordinate informa-
tion.

Data can be loaded in a number of ways. For the following examples, assume that we created a wrapper object via:

>>> from ginga.AstroImage import AstroImage
>>> img = AstroImage()

Note: Ginga provides extensive logging throughout the code, so if you are using a Python logger you can pass it to the
constructor to have it log extra information about errors when methods on the image object are being used. Assuming
you had a logger configured as logger you would pass it like so:

>>> img = AstroImage(logger=logger)

Once you have an object, you can load data directly contained in a numpy.ndarray:

>>> import numpy as np
>>> data = np.random.randint(0, 10000, (2000, 3000), dtype=np.uint)
>>> img.load_data(data)

Note: if you want to provide metadata (e.g. a separate set of FITS-type keywords) you can add it:

>>> img.update_keywords(kw_dict)

161

ginga Documentation, Release 3.3.0

From an astropy.io.fits.HDU:

>>> from astropy.io import fits
>>> with fits.open("/path/to/image.fits") as fits_f:
>>> img.load_hdu(fits_f[0])

From an astropy.nddata.NDData (or subclass, like CCDData):

>>> img.load_nddata(ndd_obj)

Files are best loaded from the appropriate file format loader module. For a FITS file:

>>> from ginga.util import io_fits
>>> img = io_fits.load_file("/path/to/image.fits")

Or, e.g. to choose a particular HDU:

>>> from ginga.util import io_fits
>>> img = io_fits.load_file("/path/to/image.fits[SCI]")

5.1.2 RGBImage

The RGBImage class is used to store conventional type 3 or 4-band RGB images.

>>> from ginga.RGBImage import RGBImage
>>> img = RGBImage()

Note: RGBImage constructor also supports the logger keyword parameter described above:

>>> img = RGBImage(logger=logger)

RGB images support the load_data method (note the shape and type of the array):

>>> data = np.random.randint(0, 256, (1000, 1000, 3), dtype=np.uint8)
>>> img.load_data(data)

Files can also be loaded from standard RGB formats (PNG, JPEG, etc) using the io_rgb module:

>>> from ginga.util import io_rgb
>>> img = io_rgb.load_file("/path/to/image.jpg")

162 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

5.2 Ginga Image Viewer Operations

This chapter describes the operations supported by the basic Ginga image viewer and how to access them programati-
cally.

5.2.1 Manipulating the view programatically

The sections below describe how to manipulate the view programatically. For all of these API examples we assume
the viewer object is contained in variable v. One way to create one:

>>> from ginga import toolkit
>>> toolkit.use('qt5')
>>> from ginga.gw import Viewers
>>> from ginga.misc import log
>>> logger = log.get_logger("viewer1", log_stderr=True, level=40)
>>> v = Viewers.CanvasView(logger=logger)

Many of the API calls simply set a value in the viewer’s settings object; if so, we note the associated keyword for that
setting.

5.2.2 Loading the Viewer

The image viewer can load data in a number of formats, but all formats are wrapped with a class that corresponds to the
model part of the model-view-controller design used by Ginga. For more information on creating an image wrapper
object, see Image Data Wrappers.

Once you have successfully loaded an image wrapper, you can set it into the image viewer:

>>> v.set_image(img)

5.2.3 Scaling

In Ginge lexicon, “scaling” is setting a precise scale factor for pixels. For example a scale factor of 2.0 means that two
pixels are shown in the viewer for every one pixel of data.

Ginga allows different scale factors for the X and Y axes.

Set a precise scale for X and Y:

>>> v.set_scale((0.5, 0.5))

Note: Corresponds to the viewer setting scale.

Get the scale for X and Y:

>>> v.get_scale_xy()
(0.5, 0.5)

If the scale factors are always set to the same value and adjusted equally in tandem, then you can obtain the general
scale value as:

5.2. Ginga Image Viewer Operations 163

ginga Documentation, Release 3.3.0

>>> v.get_scale_max()
0.5

Scaling Limits

Ginga places a limit on the scale when the scale would result in an aberrant viewing condition. For example, it will
cease to increase the scale when the pixel size approaches the window size.

Ginga has a feature for setting arbitrary hard limits on the minimum and maximum scale.

To get the scale limits (returns minimum and maximum scale):

>>> v.get_scale_limits()
(1e-05, 10000.0)

To set the scale limits:

>>> v.set_scale_limits(min_scale, max_scale)

The limits apply to all dimensions. A value of None (the default) means that no artificial limit will be imposed.

5.2.4 Zooming

Although Ginga uses scale factors to accomplish image scaling, it also supports the concept of zooming via levels. It
does this by mapping a zoom level to a scale factor according to the zoom algorithm (see following section) in use.

Zoom algorithms assume that a 1:1 scale is always zoom level 0. Providing a negative zoom level zooms “out” (smaller
scale) while a positive value zooms “in” (larger scale).

Set a zoom level:

>>> v.zoom_to(4)

Zoom in one level:

>>> v.zoom_in()

Zoom out three levels:

>>> v.zoom_out(3)

Zoom so that the loaded image fits the window:

>>> v.zoom_fit()

Get the current zoom level corresponding to the current scale:

>>> v.get_zoom()
-8.544

Note: Zoom levels need not be integers, and there should be an invertable mapping between scale and zoom level
defined by the zoom algorithm.

164 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Zoom Algorithms

There are two main zoom algorithms, “step” and “rate”, for determining zoom levels and corresponding scales. The
step algorithm just zooms in integer multiples of the pixels: 1, 2, 3, 4, . . . or 1/2, 1/3, 1/4, etc. The rate algorithm
simply applies a multiplier to the current scale to arrive at the new scale. This can be more appropriate to achieve a
faster (or slower) rate of zoom than stepping.

Get the zoom algorithm in use:

>>> v.get_zoom_algorithm()
'step'

Set the zoom algorithm:

>>> v.set_zoom_algorithm('rate')

Note: Corresponds to the viewer setting zoom_algorithm.

Get the zoom rate:

>>> v.get_zoomrate()
1.4142135623730951

Set the zoom rate:

>>> v.set_zoomrate(1.1)

Note: Corresponds to the viewer setting zoom_rate. The zoom rate should be defined as a value greater than 1. This
value is ignored when the “step” algorithm is in use.

5.2.5 Panning

The “pan position” defines the point on which the viewer should be centered. Normally this is specified in data coor-
dinates, but it can also be specified in world coordinates if a valid WCS is available in an image that is loaded.

Get the pan position in data coordinates (the default):

>>> v.get_pan()
(1136.0, 2136.5)

Set the pan position:

>>> v.set_pan((500.0, 1500.0))

Get the pan position in world coordinates (in this case, degrees):

>>> v.get_pan(coord='wcs')
(300.16929984148425, 22.80602873666544)

Set the pan position in world coordinates:

5.2. Ginga Image Viewer Operations 165

ginga Documentation, Release 3.3.0

>>> v.set_pan((298.21, 24.6), coord='wcs')

Note: Corresponds to the viewer settings pan and pan_coord.

Pan to 25% of the X axis and 75% of the Y axis:

>>> v.panset_pct(0.25, 0.75)

Center the image (i.e., pan to center):

>>> v.center_image()

Get the coordinates in the actual data corresponding to the area shown in the display for the current zoom level and
pan:

>>> v.get_pan_rect()
array([[886. , 1886.5],

[886. , 2386.5],
[1386. , 2386.5],
[1386. , 1886.5]])

The values are returned as corners lower-left, upper-left, upper-right, lower-right.

5.2.6 Transforms

The Ginga viewer provides three quick transforms in addition to rotation (described below). These are flipping in the X
axis, flipping in the Y axis, and swapping axes. These three transforms can be set in a single call, with three booleans,
in the order just listed.

Flip the view in the X dimension:

>>> v.transform(True, False, False)

Flip the view in the Y dimension:

>>> v.transform(False, True, False)

Flip the view in the X dimension and swap the X and Y axes:

>>> v.transform(True, False, True)

Get the existing transforms:

>>> v.get_transforms()
(True, False, True)

Note: Corresponds to the viewer settings flip_x, flip_y and swap_xy.

Attempt to orient the viewer according to the image loaded (may set transforms to accomplish this):

166 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

>>> v.auto_orient()

5.2.7 Rotation

The Ginga viewer can also rotate the image. Values are specified in degrees.

Rotate the view 45 degrees:

>>> v.rotate(45.0)

Get current rotation:

>>> v.get_rotation()
45.0

Note: Corresponds to the viewer setting rot_deg.

5.2.8 Cut Levels

The cut levels are Ginga’s lexicon for the low and high values used to establish the mapping from data values to the
minimum and maximum pixel luminance values in the viewer. Values in the data below the low cut value will be driven
to the bottom luminance value and values above the high cut value will be driven to the top luminance value. The values
in between are scaled to the range between these values.

Setting cut levels on the viewer:

>>> v.cut_levels(lo_val, hi_val)

Get current cut levels:

>>> v.get_cut_levels()
(440.6118816303353, 606.8032622632695)

Note: Corresponds to the viewer setting cuts.

Auto cut levels

Calculating and applying an auto cut levels (aka “auto levels”), using the current algorithm setting and parameters:

>>> v.auto_levels()

Find out what automatic cut levels algorithms are available:

>>> v.get_autocut_methods()
('minmax', 'median', 'histogram', 'stddev', 'zscale')

Set viewer to use a specific algorithm, with parameters:

5.2. Ginga Image Viewer Operations 167

ginga Documentation, Release 3.3.0

>>> v.set_autocut_params('histogram', pct=0.90)

Note: Every auto cuts algorithm is encapsulated into an auto cuts class. The parameters can vary according to the
parameters of the algorithm and are passed as keyword parameters to this call.

Retrieve the current autocuts object:

>>> v.autocuts
<ginga.AutoCuts.Histogram at 0x7fb404a19dd8>

Explicitly set the autocuts object directly:

>>> from ginga.AutoCuts import ZScale
>>> ac = ZScale(v.get_logger(), contrast=0.4)
>>> v.set_autocuts(ac)

Note: Unless you are using a custom autocuts class it is generally easier to just use the set_autocut_params() method.

5.2.9 Color Distribution

The color distribution algorithm distributes the values in the image after the cut levels to the colors defined by the color
map. This normally describes a mapping curve such as linear, logarithmic, etc.

Find out what color distribution algorithms are available:

>>> v.get_color_algorithms()
['linear', 'log', 'power', 'sqrt', 'squared', 'asinh', 'sinh', 'histeq']

Set a specific color distribution algorithm:

>>> v.set_color_algorithm('log')

Find out which one is being used:

>>> v.get_settings().get('color_algorithm')
'log'

5.2.10 Color Map

Find out what color maps are available:

>>> from ginga import cmap
>>> cmap.get_names()
['Accent',
'Accent_r',
'afmhot',
'afmhot_r',
...
'YlOrBr_r',

(continues on next page)

168 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

'YlOrRd',
'YlOrRd_r']

Set a color map:

>>> v.set_color_map('YlOrBr_r')

Find out which one is being used:

>>> v.get_settings().get('color_map')
'YlOrBr_r'

Enable matplotlib color maps to be available (if matplotlib is installed):

>>> cmap.add_matplotlib_cmaps()

Invert the color map:

>>> v.invert_cmap()

Shift the color map by pct percent:

>>> v.shift_cmap(0.2)

Stretch/shrink and shift color map:

>>> v.scale_and_shift_cmap(scale_pct, shift_pct)

5.2.11 Intensity Map

Note: Intensity maps are a feature that largely duplicates the functionality of color distributions (see above). It
performs a remapping of the colors after the color mapping phase has been applied. We suggest that most users will
want to leave the default setting of ‘ramp’, which is leaves the color map as is.

Find out what intensity maps are available:

>>> from ginga import imap
>>> imap.get_names()
['equa',
'expo',
'gamma',
'jigsaw',
'lasritt',
'log',
'neg',
'neglog',
'null',
'ramp',
'stairs',
'ultrasmooth']

5.2. Ginga Image Viewer Operations 169

ginga Documentation, Release 3.3.0

Set an intensity map:

>>> v.set_intensity_map('lasritt')

Find out which one is being used:

>>> v.get_settings().get('intensity_map')
'lasritt'

5.2.12 Auto configuration

Ginga has some settings that control whether certain initializations are performed when a new image is set in the viewer.

Enable auto orientation of new image (see auto_orient() under “Transforms”):

>>> v.enable_auto_orient(True)

Note: Corresponds to the viewer setting auto_orient.

Enable auto centering (pan to center of new image):

>>> v.enable_autocenter('on')

Note: Corresponds to the viewer setting autocenter.

Enable auto cuts (calculate and set cut levels of new image):

>>> v.enable_autocuts('on')

Note: Corresponds to the viewer setting autocuts.

Enable auto zoom (scale to fit new image to window):

>>> v.enable_autozoom('on')

Note: Corresponds to the viewer setting autozoom.

The autocenter, autocuts, and autozoom settings allow the following values:

• ‘on’: apply to every new image

• ‘once’: apply to the first image set only, then turn ‘off’

• ‘override’: apply to each image until the user overrides manually, then turn ‘off’, and

• ‘off’: never apply

170 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

5.2.13 Miscellaneous Operations

Set the background color of the viewer:

>>> v.set_bg(0.2, 0.2, 0.2)

Note: Corresponds to the viewer setting color_bg.

Set the foreground color of the viewer (used for some text overlays):

>>> v.set_fg(0.8, 0.9, 0.7)

Note: Corresponds to the viewer setting color_fg.

Put a message onscreen for 2 seconds:

>>> v.onscreen_message("Hello, world!", delay=2.0)

Get the last position of the cursor in data coordinates:

>>> v.get_last_data_xy()
(782.4466094067262, 2136.5)

Whether the viewer widget should take focus when the cursor enters the window:

>>> v.set_enter_focus(True)

Note: Corresponds to the viewer setting enter_focus.

Get the bounding box of viewer extents (returns lower-left and upper-right corners of the bounding box):

>>> v.get_limits()
((0.0, 0.0), (2272.0, 4273.0))

Note: Normally the limits are defined by an image that is loaded, if any. But they can also be overridden, as shown
below.

Set explicit limits for the viewer:

>>> v.set_limits(((250.0, 250.0), (2500.0, 2500.0)))

Note: Corresponds to the viewer setting limits.

5.2. Ginga Image Viewer Operations 171

ginga Documentation, Release 3.3.0

5.3 Ginga Canvas Graphics

This chapter describes the basic architecture of Ginga’s canvas-viewer-renderer model, and describes how to do graphics
operations on canvases.

5.3.1 Canvases and Canvas Objects

Ginga’s canvas is based on the DrawingCanvas class. On the canvas can be placed a number of different kinds of
canvas objects, including many geometric shapes. The set of canvas objects includes:

• Text: a piece of text having a single point coordinate.

• Polygon: a closed polygon defined by N points.

• Path: an open polygon defined by N points.

• Box: a rectangular shape defined by a single center point, two radii and a rotation angle.

• Ellipse: an elliptical shape defined by a single center point, two radii and a rotation angle.

• Triangle: an equilateral triangular shape defined by a single center point, two radii and a rotation angle.

• Circle: a circular shape defined by a center point and a radius.

• Point: a marker for a point defined by a single point and a radius for the “arms”.

• Rectangle – a rectangular shape defined by two points.

• Line – a line defined by two points.

• RightTriangle – a right triangle defined by two points.

• Compass – a compass defined by a point and a radius.

• Ruler – a ruler defined by two points.

• Crosshair – a crosshair defined by one point.

• Annulus – an annulus defined by one point, a radius and a width.

• Annulus2R – an annulus defined by one point, two radii and two widths.

• Image – a raster image anchored by a point.

• NormImage – a subclass of Image, with rendering done with the aid of a colormap, a color distribution algorithm
(linear, log, etc), and defined low and high cut levels.

• CompoundObject: a compound object combining a series of other canvas objects.

• Canvas: a transparent subcanvas on which items can be placed.

• DrawingCanvas: Like a Canvas, but also can support manual drawing operations initiated in a viewer to create
shapes on itself.

• ColorBar: a bar with a color range and ticks and value markers to help indicate the mapping of color to the
value range of the data.

• ModeIndicator: a small rectangular overlay with text indicating that the user has entered a special key-
board/mouse mode.

All canvas objects are subclasses of CanvasObjectBase and may also contain mixin classes that define com-
mon attributes or behavior. For example, Line, Ruler and RightTriangle are all subclasses of the mixin class
TwoPointMixin.

172 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Note: In most general canvas systems you can layer objects in any order. In Ginga there is an optimization of canvas
redrawing that merges image bitmaps before updating other kinds of canvas objects. This means that while images can
be stacked in any order, effectively you cannot have other objects appear underneath image objects. For most uses of
the viewer this is not a big limitation.

5.3.2 Viewers

All Ginga viewers are subclasses of ImageViewBase. These objects implement a viewport onto a DrawingCanvas
object. Each viewer contains a handle to a canvas and provides a particular view onto that canvas defined by:

• dimensions of their viewport (i.e. the height and width of the native widget’s window into which the viewer is
rendering),

• scale in X and Y dimensions,

• a pan position linking the center of the viewport to a canvas coordinate,

• a transform consisting of possible flips in X, Y axes and/or swapping of X/Y axes, and

• a rotation.

Two different ImageView-based viewers can share the same canvas handle, providing different views into the same
canvas. Another typical arrangement for sharing is where each viewer has a private canvas, and on each private canvas
is placed a shared transparent subcanvas, an arrangement which allows each viewer to have a mix of private and shared
canvas objects. Another common idiom is to layer multiple DrawingCanvas objects to more easily manage multiple
collections of overlaid graphics.

The various subclasses of ImageView are designed to render into a different widget set’s “native” canvas using a
CanvasRenderer customized for that target.

5.3.3 Support for Astropy regions

Ginga provides a module for plotting Astropy regions shapes on canvases. To use this, import the ginga.util.
ap_regions module and use one of the three module functions astropy_region_to_ginga_canvas_object,
add_region, or ginga_canvas_object_to_astropy_region.

astropy_region_to_ginga_canvas_object takes a regions shape and returns a Ginga canvas object that most
closely implements the shape. The object returned can be used like any Ginga canvas object: it can be used in a
compound object, added to a canvas, etc. Assuming you have a viewer v and an Astropy region r:

from ginga.util import ap_region
obj = ap_region.astropy_region_to_ginga_canvas_object(r)
canvas = v.get_canvas()
canvas.add(obj)

add_region is a convenience method for both converting an object and adding it to a canvas.

ap_region.add_region(canvas, r)

ginga_canvas_object_to_astropy_region provides the reverse transformation, taking a Ginga canvas object and
converting it to the closest representation as an Astropy region.

r = ap_region.ginga_canvas_object_to_astropy_region(obj)

5.3. Ginga Canvas Graphics 173

ginga Documentation, Release 3.3.0

5.4 Plots

Note: Ginga’s graph plotting features are new, and the API should be considered somewhat experimental. In the future,
some elements of PlotAide might be merged into existing components of the viewer or action bindings classes.

Ginga has some basic facilities for graphing interactive XY line plots. Ginga plots may be useful in cases where good
interactive performance in a line plot is desirable (e.g. plotting an XY line repeatedly at speed), or being able to zoom
in and out of X and Y axes independently, flip axes, swap axes or pan axes independently. There is some special support
for plotting and examining time-series data.

Graphs are shown in a Ginga viewer and managed mostly by a separate PlotAide object, which manipulates the viewer
and its main canvas. The plot aide is like a coordinator or intermediary between the components of the plot. It initializes
the viewer for special user plot interaction and provides some coordination between XY plots and other “plot decor”
like plot title and key, axis titles, axis grids and markers, etc.

5.4.1 Plot objects

Plot objects are available by importing classes from ginga.canvas.types.plots. These classes are divided into
“plot decor”: plot title and key area (PlotTitle), X axis title, grid and markers (XAxis), Y axis title grid and markers
(YAxis), plot background (PlotBG), etc. XYPlot objects (or subclasses thereof) form the individual plot lines within
the graph. In typical use, the plot aide provides a convenience method (setup_standard_frame) that can automati-
cally add and configure the plot decor, so that the user then simply needs to instantiate XYPlot objects and add them
to the plot via the plot aide’s add_plot method.

Assuming that we have created and configured a CanvasView viewer (v) with an associated ScrolledView widget
(sw), we can setup an empty graph (refer to Using the Basic Ginga Viewer Object in Python Programs for a review of
creating a viewer and associated scroll widget):

from ginga.plot.PlotAide import PlotAide

aide = PlotAide(v)
aide.configure_scrollbars(sw)

aide.setup_standard_frame(title="Functions", x_title="x", y_title="f(x)")

To plot, simply call plot or plot_xy (depending on whether your data points are together or in separate arrays) on
each XYPlot object that is present in the graph. Then call update_plots() on the plot aide to update the viewer.

Let’s add two plots to this interactive graph:

from ginga.canvas.types.plots import XYPlot
import numpy as np

sin_plot = XYPlot(name='Sin', color='red', linewidth=2.0)
aide.add_plot(sin_plot)

cos_plot = XYPlot(name='Cos', color='blue', linewidth=2.0)
aide.add_plot(cos_plot)

Finally, let’s assign some data to the plots and update the viewer:

174 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

x_arr = np.linspace(-10.0, 10.0, 100)
y_arr = np.sin(x_arr)
sin_plot.plot_xy(x_arr, y_arr)

y_arr = np.cos(x_arr)
cos_plot.plot_xy(x_arr, y_arr)

aide.update_plots()

Fig. 1: The plotted Sine and Cosine curves.

Support for autoscaling axes

The plot aide has two settings that control auto adjustment of the viewer’s scale and pan positions when the view is
updated (via update_plots). The settings are intrinsic to the plot aide. The values can be toggled by keystroke
commands within the viewer, or programatically by assigning the appropriate settings on the plot aide:

aide.settings.set(autoaxis_x='off', autoaxis_y='vis')

5.4. Plots 175

ginga Documentation, Release 3.3.0

autoaxis_x

The setting for autoaxis_x controls how the viewer will handle the X dimension as far as panning and scaling auto-
matically when the view is updated. The settings are:

• off: the viewer makes no pan or scale adjustments to X

• pan: the viewer pans so that the values at the end of the plot are visible; this is useful for live time-series plots,
for example

• on: the viewer scales and pans so that the full X plot can be fit to the plot area shown in the viewer

The default value in the plot aide is on.

autoaxis_y

The setting for autoaxis_y controls how the viewer will handle the Y dimension as far as panning and scaling auto-
matically when the view is updated. The settings are:

• off: the viewer makes no pan or scale adjustments to Y

• vis: the viewer scales Y so that the Y values corresponding to the X values visible in the plot will fill the Y
dimension of the plot area

• on: the viewer scales and pans so that the full Y range of the data (visible or not) could be shown in the plot area
of the viewer

The default value in the plot aide is on.

5.4.2 Interactive Viewer Operations on Graphs

For default bindings for interactive graph operations, see the “Plot” mode in the Ginga Quick Reference (Plot mode).
The plot aide will initialize the viewer into Plot mode, so that it is continually ready for user interaction with the graph.

Zooming Graphs

Zooming on graphs is handled independently in the X and Y axes. Mouse or touchpad scrolling is usually used to
zoom the X axes. Note that zooming will normally change any autoaxis setting to off since you are overriding the
setting. See the Quick Reference link above for the cursor and key commands in plot mode for zooming and changing
the autoaxis settings interactively.

Panning Graphs

Panning graphs is usually accomplished via scroll bars. When used with a properly configured scroll widget (as shown in
the example above), the scrollbar aligned with the X axis becomes visible when autoaxis_x becomes off. Similarly,
the scrollbar aligned with the Y axis becomes visible when autoaxis_y becomes off. The scroll bars can then be
used independently to pan the graph in either axis.

176 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Flipping and swapping

You can flip the X or Y axis and also swap axes, if it makes sense to do so. The usual key bindings for these can be
found in the Ginga quick reference under the Transform commands (Transform commands).

5.4.3 Time Series Plots

Time-series plots are plots in which time is plotted on the X axis. Ginga has some special support for these in the
module ginga.plot.time_series. There are classes for XTimeAxis, TimePlotTitle, TimePlotBG that can be
used in place of the normal plot decor, and an XYDataSource that can be used to efficiently keep track of a large fixed
array of (x, y) points, from which a XYPlot can be conveniently updated. When using custom plot decor like this, you
need to add it manually via the plot aide’s add_plot_decor method, instead of using setup_standard_frame:

import ginga.plot.time_series as tsp
from ginga.canvas.types.plots import YAxis

our plot
aide = PlotAide(viewer)
aide.settings.set(autoaxis_x='pan', autoaxis_y='vis')

bg = tsp.TimePlotBG(warn_y=70.0, alert_y=80.0, linewidth=2)
aide.add_plot_decor(bg)

title = tsp.TimePlotTitle(title="Humidity (%)")
aide.add_plot_decor(title)

x_axis = tsp.XTimeAxis(num_labels=4)
aide.add_plot_decor(x_axis)

y_axis = YAxis(num_labels=4)
aide.add_plot_decor(y_axis)

The TimePlotBG class has support for a warning and an alert. These are set when the current (last or right-most) Y
value exceeds the warn_y or alert_y values. In the above example, the warning value is set to 70.0 and the alert value
is set to 80.0. The warning and alert levels, if set, are shown by yellow and red lines in the plot background. Additionally,
if the current Y value exceeds the warning level then the background turns yellow, as shown in the example application
below; if it exceeds the alert level then the background turns pink (alert takes precedence over warning). If either
warn_y or alert_y values are not passed, or set to None, then there will be no warning or alert lines or background
color change in the plot.

For more detail on time series plots, see the example “plot_time_series.py” under the “examples/gw” folder.

5.5 Developing with Ginga

• modindex

Developers interested in using Ginga in their project will probably follow one of two logical development paths:

• using Ginga toolkit classes in a program of their own design, or

• starting with the full-featured reference viewer that comes with Ginga and customizing it for some special pur-
pose, typically by modifying one of the plugins or writing a new plugin.

5.5. Developing with Ginga 177

ginga Documentation, Release 3.3.0

Fig. 2: An example of time series plots with fake environment data. Each plot contains 86400 seconds (24 hours)
of data points, and can be zoomed and panned interactively using the methods described in the Quick Reference link
above.
178 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

The first approach is probably best for when the developer has a custom application in mind, needs a minimal but
powerful viewer or wants to develop an entirely new full-featured viewer. Developers interested in this direction should
head over to the chapter on the viewer object (see Using the Basic Ginga Viewer Object in Python Programs).

The second approach is probably best for end users or developers that are mostly satisfied with the reference viewer as
a general purpose tool and want to add some specific enhancements or functionality. Because the reference viewer is
based on a flexible plugin architecture this is fairly straightforward to do.

5.5.1 Writing plugins for the reference viewer

The philosophy behind the design of the reference viewer distributed with the Ginga is that it is simply a flexible layout
shell for instantiating instances of the Ginga view widgets described in the earlier section. All of the other important
pieces of a modern FITS viewer–a panning widget, information panels, zoom widget, analysis panes–are implemented
as plugins: encapsulated modules that interface with the viewing shell using a standardized API. This makes it easy to
customize and to add, change or remove functionality in a very modular, flexible way.

The Ginga viewer divides the application window GUI into containers that hold either viewing widgets or plugins. The
view widgets are called “channels” in the viewer nomenclature, and are a means of organizing images in the viewer,
functioning much like “frames” in other viewers. A channel has a name and maintains its own history of images that
have cycled through it. The user can create new channels as needed. For example, they might use different channels
for different kinds of images: camera vs. spectrograph, or channels organized by CCD, or by target, or raw data vs.
quick look, etc. In the default layout, the channel tabs are in the large middle pane, while the plugins occupy the left
and right panes. Other layouts are possible, by simply changing a table used in the startup script.

Ginga distinguishes between two types of plugin: global and local. Global plugins are used where the functionality
is generally enabled during the entire session with the viewer and where the plugin is active no matter which channel
is currently under interaction with the user. Examples of global plugins include a panning view (a small, bird’s-eye
view of the image that shows a panning rectangle and allows graphical positioning of the pan region), a zoomed view
(that shows an enlarged cutout of the area currently under the cursor), informational displays about world coordinates,
FITS headers, thumbnails, etc. Figure Two global plugins: Pan (top) and Info (bottom), shown sharing a tab. shows
an example of two global plugins occupying a notebook tab.

Local plugins are used for modal operations with images in specific channels. For example, the Pick plugin is used
to perform stellar evaluation of objects, finding the center of the object and giving informational readings of the exact
celestial coordinates, image quality, etc. The Pick plugin is only visible while the user has it open, and does not capture
the mouse actions unless the channel it is operating on is selected. Thus one can have two different Pick operations
going on concurrently on two different channels, for example, or a Pick operation in a camera channel, and a Cuts (line
cuts) operation on a spectrograph channel. Figure The Pick local plugin, shown occupying a tab. shows an example of
the Pick local plugin occupying a notebook tab.

Anatomy of a Local Ginga Plugin

Let’s take a look at a local plugin to understand the API for interfacing to the Ginga shell. In Listing 2, we show a stub
for a local plugin.

from ginga import GingaPlugin

class MyPlugin(GingaPlugin.LocalPlugin):

def __init__(self, fv, fitsimage):
super(MyPlugin, self).__init__(fv, fitsimage)

def build_gui(self, container):
pass

(continues on next page)

5.5. Developing with Ginga 179

ginga Documentation, Release 3.3.0

Fig. 3: Two global plugins: Pan (top) and Info (bottom), shown sharing a tab.
180 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Fig. 4: The Pick local plugin, shown occupying a tab.
5.5. Developing with Ginga 181

ginga Documentation, Release 3.3.0

(continued from previous page)

def start(self):
pass

def stop(self):
pass

def pause(self):
pass

def resume(self):
pass

def redo(self):
pass

def __str__(self):
return 'myplugin'

A little more fleshed out example: MyLocalPlugin

This is a skeleton for a local plugin. It is also good example of something that actually runs and can be copied as a
template for a local plugin. This plugin is distributed with the Ginga package and can be loaded and invoked from a
terminal:

ginga --plugins=MyLocalPlugin --loglevel=20 --log=/tmp/ginga.log

The plugin will be accessible via the “Operation” button in the Plugin Manager bar.

from ginga import GingaPlugin
from ginga.misc import Widgets

import any other modules you want here--it's a python world!

class MyLocalPlugin(GingaPlugin.LocalPlugin):

def __init__(self, fv, fitsimage):
"""
This method is called when the plugin is loaded for the first
time. ``fv`` is a reference to the Ginga (reference viewer) shell
and ``fitsimage`` is a reference to the specific viewer
object associated with the channel on which the plugin is being
invoked.
You need to call the superclass initializer and then do any local
initialization.
"""
super(MyLocalPlugin, self).__init__(fv, fitsimage)

your local state and initialization code goes here

def build_gui(self, container):
(continues on next page)

182 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

"""
This method is called when the plugin is invoked. It builds the
GUI used by the plugin into the widget layout passed as
``container``.
This method may be called many times as the plugin is opened and
closed for modal operations. The method may be omitted if there
is no GUI for the plugin.

This specific example uses the GUI widget set agnostic wrappers
to build the GUI, but you can also just as easily use explicit
toolkit calls here if you only want to support one widget set.
"""
top = Widgets.VBox()
top.set_border_width(4)

this is a little trick for making plugins that work either in
a vertical or horizontal orientation. It returns a box container,
a scroll widget and an orientation ('vertical', 'horizontal')
vbox, sw, orientation = Widgets.get_oriented_box(container)
vbox.set_border_width(4)
vbox.set_spacing(2)

Take a text widget to show some instructions
self.msgFont = self.fv.getFont("sansFont", 12)
tw = Widgets.TextArea(wrap=True, editable=False)
tw.set_font(self.msgFont)
self.tw = tw

Frame for instructions and add the text widget with another
blank widget to stretch as needed to fill emp
fr = Widgets.Frame("Instructions")
vbox2 = Widgets.VBox()
vbox2.add_widget(tw)
vbox2.add_widget(Widgets.Label(''), stretch=1)
fr.set_widget(vbox2)
vbox.add_widget(fr, stretch=0)

Add a spacer to stretch the rest of the way to the end of the
plugin space
spacer = Widgets.Label('')
vbox.add_widget(spacer, stretch=1)

scroll bars will allow lots of content to be accessed
top.add_widget(sw, stretch=1)

A button box that is always visible at the bottom
btns = Widgets.HBox()
btns.set_spacing(3)

Add a close button for the convenience of the user
btn = Widgets.Button("Close")
btn.add_callback('activated', lambda w: self.close())

(continues on next page)

5.5. Developing with Ginga 183

ginga Documentation, Release 3.3.0

(continued from previous page)

btns.add_widget(btn, stretch=0)
btns.add_widget(Widgets.Label(''), stretch=1)
top.add_widget(btns, stretch=0)

Add our GUI to the container
container.add_widget(top, stretch=1)
NOTE: if you are building a GUI using a specific widget toolkit
(e.g. Qt) GUI calls, you need to extract the widget or layout
from the non-toolkit specific container wrapper and call on that
to pack your widget, e.g.:
#cw = container.get_widget()
#cw.addWidget(widget, stretch=1)

def close(self):
"""
Example close method. You can use this method and attach it as a
callback to a button that you place in your GUI to close the plugin
as a convenience to the user.
"""
chname = self.fv.get_channel_name(self.fitsimage)
self.fv.stop_local_plugin(chname, str(self))
return True

def start(self):
"""
This method is called just after ``build_gui()`` when the plugin
is invoked. This method may be called many times as the plugin is
opened and closed for modal operations. This method may be omitted
in many cases.
"""
self.tw.set_text("""This plugin doesn't do anything interesting.""")
self.resume()

def pause(self):
"""
This method is called when the plugin loses focus.
It should take any actions necessary to stop handling user
interaction events that were initiated in ``start()`` or
``resume()``.
This method may be called many times as the plugin is focused
or defocused. It may be omitted if there is no user event handling
to disable.
"""
pass

def resume(self):
"""
This method is called when the plugin gets focus.
It should take any actions necessary to start handling user
interaction events for the operations that it does.
This method may be called many times as the plugin is focused or
defocused. The method may be omitted if there is no user event

(continues on next page)

184 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

handling to enable.
"""
pass

def stop(self):
"""
This method is called when the plugin is stopped.
It should perform any special clean up necessary to terminate
the operation. The GUI will be destroyed by the plugin manager
so there is no need for the stop method to do that.
This method may be called many times as the plugin is opened and
closed for modal operations, and may be omitted if there is no
special cleanup required when stopping.
"""
pass

def redo(self):
"""
This method is called when the plugin is active and a new
image is loaded into the associated channel. It can optionally
redo the current operation on the new image. This method may be
called many times as new images are loaded while the plugin is
active. This method may be omitted.
"""
pass

def __str__(self):
"""
This method should be provided and should return the lower case
name of the plugin.
"""
return 'mylocalplugin'

The instance variables “fv” and “fitsimage” will be assigned by the superclass initializer to self.fv and
self.fitsimage–these are the reference viewer “shell” and the ginga display object respectively. To interact with the
viewer you will be calling methods on one or both of these objects.

The “fitsimage” object is the ginga image viewer object associated with the channel. You can get a good idea of how to
programmatically manipulate this viewer here Ginga Image Viewer Operations and by browsing the source of the many
plugins distributed with Ginga. Most of them are not very long or complex. Also, a plugin can include any Python
packages or modules that it wants and programming one is essentially similar to writing any other Python program. We
suggest picking a plugin that looks or does something similar to what you are interested in, copying it, and modifying
it to fit your needs.

5.5. Developing with Ginga 185

ginga Documentation, Release 3.3.0

Launching and Debugging Your Plugin

The easiest way to start out is to create a plugins directory under your ginga configuration area. In a terminal:

mkdir $HOME/.ginga/plugins

Put your plugin in there (a good one to start with is to modify the MyLocalPlugin example that comes with Ginga):

cd .../ginga/examples/reference-viewer
cp MyLocalPlugin.py $HOME/.ginga/plugins/MyPlugin.py

To load it when the reference viewer starts (and add some logging to stderr as well as to a file):

ginga --plugins=MyPlugin --loglevel=20 --stderr --log=/tmp/ginga.log

To start the plugin from within the reference viewer, use the Plugin Manager bar just below the color and readout bars.
Use the “Operation” menu to select your plugin and it should be launched in the right panel.

If you don’t see the name of your plugin in the Operation menu, then there was probably an error trying to load it.
Examine the log and search for the name of your plugin–you should find some error message associated with it.

If you select your plugin from the menu, but it doesn’t launch a GUI, there may be a problem or error in the plugin file.
Again, examine the log and search for the name of your plugin–you should find some error message associated with
it. It may help for you to add some debugging messages to your plugin (either using self.logger.debug(”. . . ”) or simple
print statements to stdout) to gauge the progress of building the gui and plugin starting.

If the plugin launches, but encounters an error building the GUI, it should show some error messages (and probably
a stack trace) in placeholders in the right panel in the container where it tried to build the GUI or possibly under the
Errors tab.

Note: Ginga has a feature for quickly reloading plugins to facilitate rapid debugging cycles. If it is not already running,
start the “Command Line” plugin from the “Plugins->Debug” menu in the menu bar. If your plugin launched (but has
some error), make sure you have closed your plugin by right clicking (or Control + click on Mac touchpad) on the small
box representing your plugin in the Plugin Manager bar and selecting “Stop”. In the Command Line plugin, there is
a small box labeled “Type command here:”. Use the command “reload_local <plugin_name>”–this will reload the
python module representing your plugin and you should be able to immediately restart it using the Plugin Manager bar
as described above (if the plugin is of the global plugin variety, use the command “reload_global” instead).

If you have edited third party modules that are included in the plugin, this will not be enough to pick up those changes.

A more complex example: The Ruler Plugin

Finally, in Listing 3 we show a completed plugin for Ruler. The purpose of this plugin to draw triangulation (distance
measurement) rulers on the image. For reference, you may want to refer to the ruler shown in The Ruler local plugin
GUI, shown occupying a tab..

#
Ruler.py -- Ruler plugin for Ginga reference viewer
#
from ginga import GingaPlugin
from ginga.gw import Widgets

class Ruler(GingaPlugin.LocalPlugin):

(continues on next page)

186 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Fig. 5: The Ruler local plugin GUI, shown occupying a tab.

5.5. Developing with Ginga 187

ginga Documentation, Release 3.3.0

(continued from previous page)

def __init__(self, fv, fitsimage):
superclass defines some variables for us, like logger
super(Ruler, self).__init__(fv, fitsimage)

self.rulecolor = 'green'
self.layertag = 'ruler-canvas'
self.ruletag = None

self.dc = fv.get_draw_classes()
canvas = self.dc.DrawingCanvas()
canvas.enable_draw(True)
canvas.enable_edit(True)
canvas.set_drawtype('ruler', color='cyan')
canvas.set_callback('draw-event', self.wcsruler)
canvas.set_callback('draw-down', self.clear)
canvas.set_callback('edit-event', self.edit_cb)
canvas.set_draw_mode('draw')
canvas.set_surface(self.fitsimage)
canvas.register_for_cursor_drawing(self.fitsimage)
canvas.name = 'Ruler-canvas'
self.canvas = canvas

self.w = None
self.unittypes = ('arcmin', 'degrees', 'pixels')
self.units = 'arcmin'

def build_gui(self, container):
top = Widgets.VBox()
top.set_border_width(4)

vbox, sw, orientation = Widgets.get_oriented_box(container)
vbox.set_border_width(4)
vbox.set_spacing(2)

self.msgFont = self.fv.get_font("sansFont", 12)
tw = Widgets.TextArea(wrap=True, editable=False)
tw.set_font(self.msgFont)
self.tw = tw

fr = Widgets.Expander("Instructions")
fr.set_widget(tw)
vbox.add_widget(fr, stretch=0)

fr = Widgets.Frame("Ruler")

captions = (('Units:', 'label', 'Units', 'combobox'),
)

w, b = Widgets.build_info(captions, orientation=orientation)
self.w = b

combobox = b.units
for name in self.unittypes:

(continues on next page)

188 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

combobox.append_text(name)
index = self.unittypes.index(self.units)
combobox.set_index(index)
combobox.add_callback('activated', lambda w, idx: self.set_units())

fr.set_widget(w)
vbox.add_widget(fr, stretch=0)

mode = self.canvas.get_draw_mode()
hbox = Widgets.HBox()
btn1 = Widgets.RadioButton("Draw")
btn1.set_state(mode == 'draw')
btn1.add_callback('activated', lambda w, val: self.set_mode_cb('draw', val))
btn1.set_tooltip("Choose this to draw a ruler")
self.w.btn_draw = btn1
hbox.add_widget(btn1)

btn2 = Widgets.RadioButton("Edit", group=btn1)
btn2.set_state(mode == 'edit')
btn2.add_callback('activated', lambda w, val: self.set_mode_cb('edit', val))
btn2.set_tooltip("Choose this to edit a ruler")
self.w.btn_edit = btn2
hbox.add_widget(btn2)

hbox.add_widget(Widgets.Label(''), stretch=1)
vbox.add_widget(hbox, stretch=0)

spacer = Widgets.Label('')
vbox.add_widget(spacer, stretch=1)

top.add_widget(sw, stretch=1)

btns = Widgets.HBox()
btns.set_spacing(3)

btn = Widgets.Button("Close")
btn.add_callback('activated', lambda w: self.close())
btns.add_widget(btn, stretch=0)
btns.add_widget(Widgets.Label(''), stretch=1)
top.add_widget(btns, stretch=0)

container.add_widget(top, stretch=1)

def set_units(self):
index = self.w.units.get_index()
units = self.unittypes[index]
self.canvas.set_drawtype('ruler', color='cyan', units=units)

if self.ruletag is not None:
obj = self.canvas.get_object_by_tag(self.ruletag)
if obj.kind == 'ruler':

obj.units = units

(continues on next page)

5.5. Developing with Ginga 189

ginga Documentation, Release 3.3.0

(continued from previous page)

self.canvas.redraw(whence=3)
return True

def close(self):
chname = self.fv.get_channel_name(self.fitsimage)
self.fv.stop_local_plugin(chname, str(self))
return True

def instructions(self):
self.tw.set_text("""Draw (or redraw) a line with the cursor.

Display the Zoom tab at the same time to precisely see detail while drawing.""")

def start(self):
self.instructions()
start ruler drawing operation
p_canvas = self.fitsimage.get_canvas()
if not p_canvas.has_object(self.canvas):

p_canvas.add(self.canvas, tag=self.layertag)

self.canvas.delete_all_objects()
self.resume()

def pause(self):
self.canvas.ui_set_active(False)

def resume(self):
self.canvas.ui_set_active(True)
self.fv.show_status("Draw a ruler with the right mouse button")

def stop(self):
remove the canvas from the image
p_canvas = self.fitsimage.get_canvas()
try:

p_canvas.delete_object_by_tag(self.layertag)
except:

pass
self.canvas.ui_set_active(False)
self.fv.show_status("")

def redo(self):
obj = self.canvas.get_object_by_tag(self.ruletag)
if obj.kind != 'ruler':

return True
redraw updates ruler measurements
self.canvas.redraw(whence=3)

def clear(self, canvas, button, data_x, data_y):
self.canvas.delete_all_objects()
self.ruletag = None
return False

(continues on next page)

190 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

def wcsruler(self, surface, tag):
obj = self.canvas.get_object_by_tag(tag)
if obj.kind != 'ruler':

return True
remove the old ruler
try:

self.canvas.delete_object_by_tag(self.ruletag)
except:

pass

change some characteristics of the drawn image and
save as the new ruler
self.ruletag = tag
obj.color = self.rulecolor
obj.cap = 'ball'
self.canvas.redraw(whence=3)

def edit_cb(self, canvas, obj):
self.redo()
return True

def edit_select_ruler(self):
if self.ruletag is not None:

obj = self.canvas.get_object_by_tag(self.ruletag)
self.canvas.edit_select(obj)

else:
self.canvas.clear_selected()

self.canvas.update_canvas()

def set_mode_cb(self, mode, tf):
if tf:

self.canvas.set_draw_mode(mode)
if mode == 'edit':

self.edit_select_ruler()
return True

def __str__(self):
return 'ruler'

#END

This plugin shows a standard design pattern typical to local plugins. Often one is wanting to draw or plot something on
top of the image below. The CanvasView widget used by Ginga allows this to be done very cleanly and conveniently
by adding a DrawingCanvas object to the image and drawing on that. Canvases can be layered on top of each other in
a manner analogous to “layers” in an image editing program. Since each local plugin maintains it’s own canvas, it is
very easy to encapsulate the logic for drawing on and dealing with the objects associated with that plugin. We use this
technique in the Ruler plugin. When the plugin is loaded (refer to __init__() method), it creates a canvas, enables
drawing on it, sets the draw type and registers a callback for drawing events. When start() is called it adds that
canvas to the widget. When stop() is called it removes the canvas from the widget (but does not destroy the canvas).
pause() disables user interaction on the canvas and resume() reenables that interaction. redo() simply redraws the
ruler with new measurements taken from any new image that may have been loaded. In the __init__() method you
will notice a set_surface() call that associates this canvas with a ImageView-based widget–this is the key for the
canvas to utilize WCS information for correct plotting. All the other methods shown are support methods for doing the

5.5. Developing with Ginga 191

ginga Documentation, Release 3.3.0

ruler drawing operation and interacting with the plugin GUI.

Writing a Global Plugin

The last example was focused on writing a local plugin. Global plugins employ a nearly identical API to that shown
in Listing 2, except that the constructor does not take a fitsimage parameter. pause() and resume() can safely be
omitted. Like local plugins, build_gui() can be omitted if there is no GUI associated with the plugin.

A template: MyGlobalPlugin

This is a skeleton for a global plugin, and serves as a decent example of something that can be copied as a template for
a global plugin. This plugin is distributed with the Ginga package and can be loaded and invoked from a terminal:

ginga --modules=MyGlobalPlugin --loglevel=20 --log=/tmp/ginga.log

The plugin will be started at program startup and can be seen in the “MyGlobalPlugin” tab in the right panel. Watch
the status message as you create new channels, delete channels or load images into channels.

from ginga import GingaPlugin
from ginga.misc import Widgets

import any other modules you want here--it's a python world!

class MyGlobalPlugin(GingaPlugin.GlobalPlugin):

def __init__(self, fv):
"""
This method is called when the plugin is loaded for the first
time. ``fv`` is a reference to the Ginga (reference viewer) shell.

You need to call the superclass initializer and then do any local
initialization.
"""
super(MyGlobalPlugin, self).__init__(fv)

Your initialization here

Create some variables to keep track of what is happening
with which channel
self.active = None

Subscribe to some interesting callbacks that will inform us
of channel events. You may not need these depending on what
your plugin does
fv.set_callback('add-channel', self.add_channel)
fv.set_callback('delete-channel', self.delete_channel)
fv.set_callback('active-image', self.focus_cb)

def build_gui(self, container):
"""
This method is called when the plugin is invoked. It builds the
GUI used by the plugin into the widget layout passed as

(continues on next page)

192 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

``container``.
This method could be called several times if the plugin is opened
and closed. The method may be omitted if there is no GUI for the
plugin.

This specific example uses the GUI widget set agnostic wrappers
to build the GUI, but you can also just as easily use explicit
toolkit calls here if you only want to support one widget set.
"""
top = Widgets.VBox()
top.set_border_width(4)

this is a little trick for making plugins that work either in
a vertical or horizontal orientation. It returns a box container,
a scroll widget and an orientation ('vertical', 'horizontal')
vbox, sw, orientation = Widgets.get_oriented_box(container)
vbox.set_border_width(4)
vbox.set_spacing(2)

Take a text widget to show some instructions
self.msgFont = self.fv.getFont("sansFont", 12)
tw = Widgets.TextArea(wrap=True, editable=False)
tw.set_font(self.msgFont)
self.tw = tw

Frame for instructions and add the text widget with another
blank widget to stretch as needed to fill emp
fr = Widgets.Frame("Status")
vbox2 = Widgets.VBox()
vbox2.add_widget(tw)
vbox2.add_widget(Widgets.Label(''), stretch=1)
fr.set_widget(vbox2)
vbox.add_widget(fr, stretch=0)

Add a spacer to stretch the rest of the way to the end of the
plugin space
spacer = Widgets.Label('')
vbox.add_widget(spacer, stretch=1)

scroll bars will allow lots of content to be accessed
top.add_widget(sw, stretch=1)

A button box that is always visible at the bottom
btns = Widgets.HBox()
btns.set_spacing(3)

Add a close button for the convenience of the user
btn = Widgets.Button("Close")
btn.add_callback('activated', lambda w: self.close())
btns.add_widget(btn, stretch=0)
btns.add_widget(Widgets.Label(''), stretch=1)
top.add_widget(btns, stretch=0)

(continues on next page)

5.5. Developing with Ginga 193

ginga Documentation, Release 3.3.0

(continued from previous page)

Add our GUI to the container
container.add_widget(top, stretch=1)
NOTE: if you are building a GUI using a specific widget toolkit
(e.g. Qt) GUI calls, you need to extract the widget or layout
from the non-toolkit specific container wrapper and call on that
to pack your widget, e.g.:
#cw = container.get_widget()
#cw.addWidget(widget, stretch=1)

def get_channel_info(self, fitsimage):
chname = self.fv.get_channelName(fitsimage)
chinfo = self.fv.get_channelInfo(chname)
return chinfo

def set_info(self, text):
self.tw.set_text(text)

CALLBACKS

def add_channel(self, viewer, chinfo):
"""
Callback from the reference viewer shell when a channel is added.
"""
self.set_info("Channel '%s' has been added" % (

chinfo.name))
Register for new image callbacks on this channel's canvas
fitsimage = chinfo.fitsimage
fitsimage.set_callback('image-set', self.new_image_cb)

def delete_channel(self, viewer, chinfo):
"""
Callback from the reference viewer shell when a channel is deleted.
"""
self.set_info("Channel '%s' has been deleted" % (

chinfo.name))
return True

def focus_cb(self, viewer, fitsimage):
"""
Callback from the reference viewer shell when the focus changes
between channels.
"""
chinfo = self.get_channel_info(fitsimage)
chname = chinfo.name

if self.active != chname:
focus has shifted to a different channel than our idea
of the active one
self.active = chname
self.set_info("Focus is now in channel '%s'" % (

self.active))

(continues on next page)

194 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

return True

def new_image_cb(self, fitsimage, image):
"""
Callback from the reference viewer shell when a new image has
been added to a channel.
"""
chinfo = self.get_channel_info(fitsimage)
chname = chinfo.name

Only update our GUI if the activity is in the focused
channel
if self.active == chname:

imname = image.get('name', 'NONAME')
self.set_info("A new image '%s' has been added to channel %s" % (

imname, chname))
return True

def start(self):
"""
This method is called just after ``build_gui()`` when the plugin
is invoked. This method could be called more than once if the
plugin is opened and closed. This method may be omitted
in many cases.
"""
pass

def stop(self):
"""
This method is called when the plugin is stopped.
It should perform any special clean up necessary to terminate
the operation. This method could be called more than once if
the plugin is opened and closed, and may be omitted if there is no
special cleanup required when stopping.
"""
pass

def close(self):
self.fv.stop_global_plugin(str(self))
return True

def __str__(self):
"""
This method should be provided and should return the lower case
name of the plugin.
"""
return 'myglobalplugin'

5.5. Developing with Ginga 195

ginga Documentation, Release 3.3.0

Writing Separately Installable Plugins

If you want to distribute your plugin(s) as a separately installable package and have Ginga discover them when it starts
up, you can use the Ginga Plugin Template to write your own package that installs plugins.

You can include as many plugins in your package as you want. You write your plugins in exactly the same way as
described above, and they can be either global or local. For details, clone the repo at the link above and follow the
directions in the README.

5.6 Using the Basic Ginga Viewer Object in Python Programs

• modindex

The core design principle of the Ginga project is to make it possible to easily build powerful image viewers in Python
with many possible GUI toolkits.

This chapter is for developers who want to use only the Ginga rendering class in a program of their own design (not
customizing the reference viewer).

5.6.1 Using the basic rendering class in new programs

Ginga basically follows the Model-View-Controller (MVC) design pattern, that is described in more detail in the chapter
on internals (see Ginga Internals). The “view” classes are rooted in the base class ImageView. Ginga supports backends
for different widget sets through various subclasses of this class.

Typically, a developer picks a GUI toolkit that has a supported backend (Gtk 3, Qt 4/5, Tk, matplotlib, HTML5 canvas)
and writes a GUI program using that widget set with the typical Python toolkit bindings and API. Where they want
a image view pane they instantiate the appropriate subclass of ImageView (usually a CanvasView), and using the
get_widget() call extract the native widget and insert it into the GUI layout. A reference should also be kept to the
view object, as this is typically what you will be calling methods on to control the viewer (see Ginga Image Viewer
Operations).

Ginga does not create any additional GUI components beyond the image pane itself, however it does provide a standard
set of keyboard and mouse bindings on the host widget that can be enabled, disabled or changed. The user interface
bindings are configurable via a pluggable Bindings class which constitutes the “controller” part of the MVC design.
There are a plethora of callbacks that can be registered, allowing the user to create their own custom user interface
for manipulating the view. Of course, the developer can add many different GUI widgets from the selected toolkit to
supplement or replace these built in controls.

Listing 1 shows a code listing for a simple graphical FITS viewer built using the subclass CanvasView from the module
ImageViewQt (screenshot in Figure A simple, “bare bones” FITS viewer written in Qt.) written in around 100 or so
lines of Python. It creates a window containing an image view and two buttons. This example will open FITS files
dragged and dropped on the image window or via a dialog popped up when clicking the “Open File” button.

#! /usr/bin/env python
#
example1_qt.py -- Simple FITS viewer using the Ginga toolkit
and Qt widgets.
#
import sys

from ginga.misc import log
from ginga.qtw.QtHelp import QtGui, QtCore
from ginga.qtw.ImageViewQt import CanvasView, ScrolledView

(continues on next page)

196 Chapter 5. Developer’s Manual

https://github.com/ejeschke/ginga-plugin-template

ginga Documentation, Release 3.3.0

Fig. 6: A simple, “bare bones” FITS viewer written in Qt.

5.6. Using the Basic Ginga Viewer Object in Python Programs 197

ginga Documentation, Release 3.3.0

(continued from previous page)

from ginga.util.loader import load_data

class FitsViewer(QtGui.QMainWindow):

def __init__(self, logger):
super(FitsViewer, self).__init__()
self.logger = logger

create the ginga viewer and configure it
fi = CanvasView(self.logger, render='widget')
fi.enable_autocuts('on')
fi.set_autocut_params('zscale')
fi.enable_autozoom('on')
fi.set_callback('drag-drop', self.drop_file)
fi.set_bg(0.2, 0.2, 0.2)
fi.ui_set_active(True)
self.fitsimage = fi

enable some user interaction
bd = fi.get_bindings()
bd.enable_all(True)

w = fi.get_widget()
w.resize(512, 512)

add scrollbar interface around this viewer
sw = ScrolledView(fi)

vbox = QtGui.QVBoxLayout()
vbox.setContentsMargins(QtCore.QMargins(2, 2, 2, 2))
vbox.setSpacing(1)
vbox.addWidget(sw, stretch=1)

hbox = QtGui.QHBoxLayout()
hbox.setContentsMargins(QtCore.QMargins(4, 2, 4, 2))

wopen = QtGui.QPushButton("Open File")
wopen.clicked.connect(self.open_file)
wquit = QtGui.QPushButton("Quit")
wquit.clicked.connect(self.quit)

hbox.addStretch(1)
for w in (wopen, wquit):

hbox.addWidget(w, stretch=0)

hw = QtGui.QWidget()
hw.setLayout(hbox)
vbox.addWidget(hw, stretch=0)

vw = QtGui.QWidget()
self.setCentralWidget(vw)

(continues on next page)

198 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

vw.setLayout(vbox)

def load_file(self, filepath):
image = load_data(filepath, logger=self.logger)
self.fitsimage.set_image(image)
self.setWindowTitle(filepath)

def open_file(self):
res = QtGui.QFileDialog.getOpenFileName(self, "Open FITS file",

".", "FITS files (*.fits)")
if isinstance(res, tuple):

fileName = res[0]
else:

fileName = str(res)
if len(fileName) != 0:

self.load_file(fileName)

def drop_file(self, fitsimage, paths):
fileName = paths[0]
self.load_file(fileName)

def quit(self, *args):
self.logger.info("Attempting to shut down the application...")
self.deleteLater()

def main(options, args):

app = QtGui.QApplication(sys.argv)

ginga needs a logger.
If you don't want to log anything you can create a null logger by
using null=True in this call instead of log_stderr=True
logger = log.get_logger("example1", log_stderr=True, level=40)

w = FitsViewer(logger)
w.resize(524, 540)
w.show()
app.setActiveWindow(w)
w.raise_()
w.activateWindow()

if len(args) > 0:
w.load_file(args[0])

app.exec_()

if __name__ == '__main__':
main(None, sys.argv[1:])

Looking at the constructor for this particular viewer, you can see where we create a CanvasView object. On this object
we enable automatic cut levels (using the ‘zscale’ algorithm), configure it to auto zoom the image to fit the window and

5.6. Using the Basic Ginga Viewer Object in Python Programs 199

ginga Documentation, Release 3.3.0

set a callback function for files dropped on the window. We extract the user-interface bindings with get_bindings(),
and on this object enable standard user interactive controls for all the possible key and mouse operations. We then
extract the platform-specific widget (Qt-based, in this case) using get_widget() and pack it into a Qt container along
with a couple of buttons to complete the viewer.

Scanning down the code a bit, we can see that whether by dragging and dropping or via the click to open, we ultimately
call the load_file() method to get the data into the viewer. load_file() creates an AstroImage object (the
“model” part of our MVC design), which is then passed to the viewer via the set_image() method. AstroImage
objects have methods for ingesting data via a file path, an astropy.io.fits HDU or a bare Numpy data array. For a
reference on the model, see here:ref:_ch-image-data-wrappers.

Many of these sorts of examples for all supported backends are contained in the examples directory in the source
distribution.

For a list of many methods provided by the viewer object see this reference Ginga Image Viewer Operations. You can
also click on the module index link at the top of this chapter and then click on the link for ImageViewBase.

Graphics plotting with Ginga

A CanvasView actually pairs a view with a canvas object (in particular a DrawingCanvas object). You can get more
detail about canvases and the objects they support (see Ginga Canvas Graphics). A variety of graphical shapes are
available, and plotted objects scale, transform and rotate seamlessly with the viewer.

Rendering into Matplotlib Figures

Ginga can also render directly into a Matplotlib Figure, which opens up possibilities for overplotting beyond the limited
capabilities of the Ginga canvas items. See the examples under “examples/matplotlib” for ideas, particularly “exam-
ple4_mpl.py”.

Rendering into HTML5 canvases

Ginga can render onto HTML5 canvases displayed in a web browser. This opens up interesting possibilities for server-
based remote viewing tools. See the examples under “examples/pg”, particularly “example2_pg.py”.

Writing widget toolkit independent code

You can write code that allows the widget set to be abstracted by Ginga’s widget wrappers. This is the same technique
used to allow the reference viewer to switch between supported toolkits using the “-t” command line option. Currently
only Qt (4/5), Gtk (3), and HTML5 (to a more limited degree) are supported, and there are some limitations compared
to developing using a native toolkit directly. Nevertheless, the ability to target different platforms just by changing a
command line option is a very interesting proposition.

See the examples under “examples/gw”, particularly “example2.py”.

200 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

Fig. 7: An example of a CanvasView widget with graphical overlay.

5.6. Using the Basic Ginga Viewer Object in Python Programs 201

ginga Documentation, Release 3.3.0

5.7 Using Ginga with Jupyter

Ginga has the following modules available to support visualization in Jupyter Notebook or Lab:

• ginga.web.jupyterw uses ipywidgets; while

• ginga.web.pgw uses HTML5.

Example ipynb files are provided to illustrate basic usage of these modules.

5.8 Ginga Internals

This chapter explains the secret inner workings of Ginga and its classes so that you can subclass them and use them in
your own applications.

5.8.1 Introduction

Ginga uses a version of the Model-View-Controller design pattern. The MVC pattern spells out a division of responsi-
bilities and encapsulation where the Model provides various ways to access and interface to the data, the View provides
ways to display the data and the Controller provides the methods and user interface hooks for controlling the view.

The Model

Fig. 8: Hierarchy of Ginga AstroImage class

The Model classes are rooted in the base class BaseImage. The basic interface to the data is expected to be a Numpy-
like array object that is obtained via the get_data() method on the model. It also provides methods for obtaining
scaled, cutouts and transformed views of the data, and methods for getting and setting key-value like metadata.

There are two subclasses defined on BaseImage: RGBImage and AstroImage. RGBImage is used for displaying 3
channel RGB type images such as JPEG, TIFF, PNG, etc. AstroImage is the subclass used to represent astronomical
images and its organization is shown in Figure Hierarchy of Ginga AstroImage class. It has two delegate objects devoted
to handling World Coordinate System transformations and file IO. There is also a mixin class, LayerImage that can
be used to create layered images with alpha compositing on each layer.

202 Chapter 5. Developer’s Manual

https://ipywidgets.readthedocs.io/
https://github.com/ejeschke/ginga/tree/master/ginga/examples/jupyter-notebook
http://en.wikipedia.org/wiki/Model_view_controller

ginga Documentation, Release 3.3.0

New models can be created, subclassing from BaseImage or AstroImage. As long as the model duck types like a
BaseImage it can be loaded into a view object with the set_image() method. AstroImage provides convenience
methods for accessing WCS information that may be necessary when using the model in canvas subclasses of a View
that allow graphics drawing.

The View

Fig. 9: Class structure of Ginga basic widget viewer

Figure Class structure of Ginga basic widget viewer shows the class inheritance of the ImageViewZoom class, which is
a typical end class to use in a program if one is not planning to do any graphical overplotting. The figure key indicates
the base class verses the widget specific classes.

The View classes are rooted in the base class ImageView, which handles image display, scaling (zooming), panning,
manual cut levels, auto cut levels, color mapping, transformations, and rotation. The ImageView is quite powerful
compared to base classes in most inheritance designs, as it actually renders the view all the way out to RGB image
planes in the appropriate sizes for the widget target window. Ginga supports “backends” for different widget sets (Gtk,
Qt, Tk, etc.) through various subclasses of this base class, which do the actual painting of the resulting RGB image
into a widget in the native widget set.

In this example, ImageViewXYZ is a class that renders to a native widget in the “XYZ” toolkit. ImageViewEvent
adds event handlers for various pointing and keyboard events, but without connecting them to any particular handling
scheme. Finally, ImageViewZoom provides a concrete implementation of event handling by connecting the handlers in
the ImageViewEvent class with the logic in the BindingMapper and Bindings delegate objects as will as some logic
in the UIMixin class. This event handling scheme is described in more detail in the section on the Controller. With this
layered class construction, it is possible to minimize the widget specific code and reuse a large amount of code across
widget sets and platforms. Because the vast majority of work is done in the base class, and the outer classes simply
inherit the widget-specific ones and mix in the others, it is a fairly simple matter to port the basic Ginga functionality to
a new widget set. All that is required is that the new widget set have some kind of native widget that supports painting
an RGB image (like a canvas or image widget) and a way to register for user interaction events on that widget.

5.8. Ginga Internals 203

http://en.wikipedia.org/wiki/Duck_typing

ginga Documentation, Release 3.3.0

The Controller

The control interface is a combination of methods on the view object and a pluggable Bindings class which handles
the mapping of user input events such as mouse, gesture and keystrokes into commands on the view. There are many
callback functions that can be registered, allowing the user to create their own custom user interface for manipulating
the view.

5.8.2 Graphics on Ginga

Fig. 10: Class structure of Ginga DrawingCanvas class.

Ginga’s graphics are all rendered from objects placed on a DrawingCanvas. All objects that can be put on a
DrawingCanvas are rooted in the CanvasObject type (including DrawingCanvas itself).

5.8.3 Miscellaneous Topics

I want to use my own World Coordinate System!

No problem. Ginga encapsulates the WCS behind a pluggable object used in the AstroImage class. Your WCS should
implement this abstract class:

def MyWCS(object):
def __init__(self, logger):

self.logger = logger

def get_keyword(self, key):
return self.header[key]

def get_keywords(self, *args):
return [self.header[key] for key in args]

def load_header(self, header, fobj=None):
pass

def pixtoradec(self, idxs, coords='data'):
calculate ra_deg, dec_deg

(continues on next page)

204 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

return (ra_deg, dec_deg)

def radectopix(self, ra_deg, dec_deg, coords='data', naxispath=None):
calculate x, y
return (x, y)

def pixtosystem(self, idxs, system=None, coords='data'):
return (deg1, deg2)

def datapt_to_wcspt(self, datapt, coords='data', naxispath=None):
return [[ra_deg_0, dec_deg_0], [ra_deg_1, dec_deg_1], ...,

[ra_deg_n, dec_deg_n]]

def wcspt_to_datapt(self, wcspt, coords='data', naxispath=None):
return [[x0, y0], [x1, y1], ..., [xn, yn]]

To use your WCS with Ginga create your images like this:

from ginga.AstroImage import AstroImage
AstroImage.set_wcsClass(MyWCS)
...

image = AstroImage()
...
view.set_image(image)

or you can override the WCS on a case-by-case basis:

from ginga.AstroImage import AstroImage
...

image = AstroImage(wcsclass=MyWCS)
...
view.set_image(image)

You could also subclass AstroImage or BaseImage and implement your own WCS handling. There are certain methods
in AstroImage used for graphics plotting and plugins, however, so these would need to be supported if you expect the
same functionality.

I want to use my own file storage format, not FITS!

First of all, you can always create an AstroImage and assign its components for wcs and data explicitly. Assuming
you have your data loaded into an numpy array named data:

from ginga import AstroImage
...

image = AstroImage()
image.set_data(data)

To create a valid WCS for this image, you can set the header in the image (this assumes header is a valid mapping of
keywords to values):

5.8. Ginga Internals 205

ginga Documentation, Release 3.3.0

image.update_keywords(header)

An AstroImage can then be loaded into a viewer object with set_dataobj(). If you need a custom WCS see the
notes in Section I want to use my own World Coordinate System!. If, however, you want to add a new type of custom
loader into Ginga’s file loading framework, you can do so using the following instructions.

Adding a new kind of file opener

Ginga’s general file loading facility breaks the loading down into two phases: first, the file is identified by its magic
signature (requires the optional Python module python-magic be installed), MIME type, or filename extension. Once
the general category of file is known, methods in the specific I/O module devoted to that type are called to load the file
data.

The ginga.util.loader module is used to register file openers. An opener is a class that understand how to load
data objects from a particular kind of file format. You’ll want to start by examining this module and especially looking
at the examples at the bottom of that file for how openers are registered.

For implementing your own special opener, take a look at the BaseIOHandler class in ginga.util.io.io_base.
This is the base class for all I/O openers for Ginga. Subclass this class, and implement all of the methods that raise
NotImplementedError and optionally implement any other methods marked with the comment “subclass should
override as needed”. You can study the io_fits and io_rgb modules to see how these methods are implemented for
specific formats. Here is an example opener class for HDF5 standard image files:

This is open-source software licensed under a BSD license.
Please see the file LICENSE.txt for details.
"""
Module wrapper for loading HDF5 files.

.. note:: The API for this module is currently unstable
and may change in a future release.

"""
import re
from collections import OrderedDict
import numpy as np

try:
import h5py # noqa
have_h5py = True

except ImportError:
have_h5py = False

from ginga.util import iohelper

__all__ = ['have_h5py', 'load_file', 'HDF5FileHandler']

def load_file(filepath, idx=None, logger=None, **kwargs):
"""
Load an object from an H5PY file.
See :func:`ginga.util.loader` for more info.

"""
(continues on next page)

206 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

opener = HDF5FileHandler(logger)
with opener.open_file(filepath):

return opener.load_idx(idx, **kwargs)

class HDF5FileHandler(object):

name = 'h5py'

def __init__(self, logger):
if not have_h5py:

raise ValueError(
"Need 'h5py' module installed to use this file handler")

super(HDF5FileHandler, self).__init__()
self.kind = 'hdf5'

self.logger = logger
self._f = None

def get_indexes(self):
return self._f.keys()

def get_header(self, idx):
items = [(key, val.decode() if isinstance(val, bytes) else val)

for key, val in self._f[idx].attrs.items()]
return OrderedDict(items)

def get_idx_type(self, idx):
header = self.get_header(idx)
if header.get('CLASS', None) in ['IMAGE']:

return 'image'

TODO: is there a table spec for HDF5?

return None

def load_idx(self, idx, **kwargs):

if idx is None:
idx = self.find_first_good_idx()

typ = self.get_idx_type(idx)
if typ == 'image':

from ginga import AstroImage, RGBImage

header = self.get_header(idx)
data_np = np.copy(self._f[idx].value)

if 'PALETTE' in header:
p_idx = header['PALETTE']
p_data = self._f[p_idx].value

(continues on next page)

5.8. Ginga Internals 207

ginga Documentation, Release 3.3.0

(continued from previous page)

data_np = p_data[data_np]
image = RGBImage.RGBImage(logger=self.logger)

else:
image = AstroImage.AstroImage(logger=self.logger)
image.update_keywords(header)

image.set_data(data_np)

name = iohelper.name_image_from_path(self._path, idx=idx)
image.set(path=self._path, name=name, idx=idx,

image_loader=load_file)

return image

raise ValueError("I don't know how to read dataset '{}'".format(idx))

def open_file(self, filespec, **kwargs):
open the HDF5 file and make a full inventory of what is
available to load
info = iohelper.get_fileinfo(filespec)
if not info.ondisk:

raise ValueError("File does not appear to be on disk: %s" % (
info.url))

self._path = info.filepath

self.logger.debug("Loading file '%s' ..." % (self._path))
self._f = h5py.File(self._path, 'r', **kwargs)
return self

def close(self):
_f = self._f
self._f = None
self._path = None
_f.close()

def __len__(self):
if self._f is None:

return 0
return len(self._f)

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
return False

def load_idx_cont(self, idx_spec, loader_cont_fn, **kwargs):
if len(self) == 0:

raise ValueError("Please call open_file() first!")

(continues on next page)

208 Chapter 5. Developer’s Manual

ginga Documentation, Release 3.3.0

(continued from previous page)

idx_lst = self.get_matching_indexes(idx_spec)
for idx in idx_lst:

try:
dst_obj = self.load_idx(idx, **kwargs)

call continuation function
loader_cont_fn(dst_obj)

except Exception as e:
self.logger.error("Error loading index '%s': %s" % (idx, str(e)))

def find_first_good_idx(self):

for idx in self.get_indexes():

rule out Datasets we can't deal with
typ = self.get_idx_type(idx)
if typ not in ('image', 'table'):

continue

Looks good, let's try it
return idx

return None

def get_matching_indexes(self, idx_spec):
"""
Parameters

idx_spec : str

A string in the form of a pair of brackets enclosing some
index expression matching Datasets in the file

Returns

result : list

A list of indexes that can be used to access each Dataset
matching the pattern

"""
if index is missing, assume to open the first Dataset we know how
to do something with
if idx_spec is None or idx_spec == '':

idx = self.find_first_good_idx()
return [idx]

match = re.match(r'^\[(.+)\]$', idx_spec)
if not match:

return []

name = match.group(1).strip()
if re.match(r'^\d+$', name):

index just names a single dataset by number

(continues on next page)

5.8. Ginga Internals 209

ginga Documentation, Release 3.3.0

(continued from previous page)

Assume this means by order in the list
return [int(name)]

find all datasets matching the name
TODO: could do some kind of regular expression matching
idx_lst = []
idx = 0
for d_name in self.get_indexes():

if name == '*' or name == d_name:
idx_lst.append(d_name)

return idx_lst

Once you have created your opener class (e.g. HDF5FileHandler), you register it as follows:

from ginga.util import loader
import io_hdf5
loader.add_opener(io_hdf5.HDF5FileHandler, ['application/x-hdf'])

If you want to use this with the Ginga reference viewer, a good place to register the opener is in your ginga_config.
py as discussed in Section Customizing the Layout of the Reference Viewer Manual. The best place is probably by
implementing pre_gui_config and registering it as shown above in that function. Once your loader is registered, you
will be able to drag and drop files and use the reference viewers regular loading facilities to load your data.

Porting Ginga to a New Widget Set

[TBD]

210 Chapter 5. Developer’s Manual

CHAPTER

SIX

OPTIMIZING PERFORMANCE

There are several ways to optimize the performance of certain aspects of Ginga’s operation.

6.1 OpenCv Acceleration

Ginga includes support for OpenCv accelerated operations (e.g. rotation and rescaling). This support is used by default
if the package is installed.

To enable OpenCv support, install the python opencv module (you can find it here).

211

https://pypi.python.org/pypi/opencv-python

ginga Documentation, Release 3.3.0

212 Chapter 6. Optimizing Performance

CHAPTER

SEVEN

FAQS

This section contains some frequently asked questions (FAQs) regarding Ginga usage.

7.1 Platforms

7.1.1 Does Ginga run on Mac/Windows/Linux/XYZ?

Ginga is written entirely in the Python programming language, and uses only supporting Python packages. As long as
a platform supports Python and the necessary packages, it can run some version of Ginga. On recent Linux, Mac and
Windows versions, all of these packages are available.

7.1.2 Does Ginga work with Python 3?

Yes, but only Python 3.7 or later. Just install with Python 3. Of course, you need all the supporting modules for Python
3 (NumPy, SciPy, Qt 5, etc.).

7.1.3 Does Ginga work with Python 2?

No. If you absolutely have to use Python 2, please downgrade to Ginga 2.x series.

7.2 Toolkits

7.2.1 What GUI toolkit does Ginga use?

It depends what exactly you want to run. Ginga is both a toolkit for building viewers and also includes a “reference
viewer”. The example programs currently support Qt, GTK, Tk, matplotlib and web browser via HTML5 canvas. Some
other toolkits are being worked on and may be partially supported.

The full reference viewer currently supports Qt (4, 5 and PySide) and Gtk (ver 3). The difference is explained here, in
Section Developing with Ginga.

213

ginga Documentation, Release 3.3.0

7.3 Control Bindings

7.3.1 Can I get DS9-like user interface mappings?

Save the file called bindings.cfg.ds9 and drop it in your $HOME/.ginga folder as “bindings.cfg”. Then restart Ginga.

7.3.2 Can I customize the user interface mappings?

Yes. There is more information in the Binding Config File section.

7.3.3 Where can I find a quick reference of the bindings?

See Section Quick Reference.

7.4 Miscellaneous

7.4.1 Does Ginga work with SAMP?

Yes. See Section SAMP Control.

7.4.2 Is it possible to control Ginga remotely?

Yes. See Section RC.

7.4.3 When are you going to add the XYZ feature that DS9 has?

Maybe never. The Ginga package design goal was never to replace DS9, but to provide a full featured Python FITS
widget that we could use to build directly in Python. This is clearly seen if you look at the example programs in
examples/*/example*.py. The idea was to make it easy for someone to build any kind of custom viewer by having
a full-featured widget to build on.

That said, we did write a reference viewer because we needed something with many of the convenience features of a
modern FITS viewer. DS9 is almost the size of a small OS, however, and I’m not sure it is wise to try to match it feature
for feature. Instead, since Ginga is plugin-based, you can write plugins to give you the features you need. DS9 is a
“everything including kitchen sink” kind of viewer, whereas ginga reference viewer is more like a “take what you need
from the pantry and whip it up” type viewer.

Please send a pull request!

214 Chapter 7. FAQs

https://raw.github.com/ejeschke/ginga/master/ginga/examples/bindings/bindings.cfg.ds9

ginga Documentation, Release 3.3.0

7.4.4 Can I get Ginga reference viewer to save its size and position?

Yes. Add the line "save_layout = True" to your ~/.ginga/general.cfg file.

If the file does not exist, create it, or copy the one from ginga/examples/configs/general.cfg.

7.5 World Coordinate System

7.5.1 What library are you using for WCS?

We are lucky to have several possible choices for a Python WCS package compatible with Ginga: AstLib, Kapteyn,
Starlink, and Astropy WCS.

Kapteyn and Astropy wrap Mark Calabretta’s “WCSLIB”, AstLib wraps Jessica Mink’s “wcstools”, and I’m not sure
what Starlink uses. Note that AstLib and Starlink require Astropy to be installed in order to create a WCS object from
a FITS header.

To force the use of a particular one add this to your “general.cfg” in $HOME/.ginga:

WCSpkg = 'package'

Replace 'package' with one of 'Astropy', 'Kapteyn', 'Starlink', 'astlib', or 'choose'. If you pick
'choose', Ginga will try to pick one for you.

7.5.2 How easy is it for Ginga to support a custom WCS?

Pretty easy. See Section I want to use my own World Coordinate System!.

7.6 I/O and File Formats

7.6.1 What library are you using for FITS I/O?

There are two possible choices for a Python FITS file reading package compatible with Ginga: Astropy FITS and fitsio.
Both are originally based on the CFITSIO library (although Astropy’s version uses very little of it any more, while
fitsio is still tracking the current version).

To force the use of a particular one add this to your “general.cfg” in $HOME/.ginga:

FITSpkg = ‘package’

Replace 'package' with one of 'Astropy', 'fitsio', or 'choose'. If you pick 'choose', Ginga will try to pick
one for you.

7.5. World Coordinate System 215

http://astlib.sourceforge.net/
http://www.astro.rug.nl/software/kapteyn/
https://github.com/timj/starlink-pyast
https://docs.astropy.org/en/stable/wcs/index.html#astropy-wcs
https://docs.astropy.org/en/stable/io/fits/index.html#astropy-io-fits
https://github.com/esheldon/fitsio

ginga Documentation, Release 3.3.0

7.6.2 How easy is it for Ginga to support a new file formats besides FITS?

Pretty easy. See Section I want to use my own file storage format, not FITS!.

7.7 Problems Displaying Images

Nothing changes in the image when I change settings under “Preferences”.

Note: The Preferences plugin sets the preferences on a per-channel basis. Make sure the channel you are looking at
has the same name as the prefix for the preferences. For example: “Image” and “Image: Preferences” or “Image1” and
“Image1: Preferences”.

The preferences for a given channel are copied from the default “Image” channel until they are explicitly set and saved
using this plugin. So if you want preferences that follow around from channel to channel, save them as preferences for
“Image” and any new channels created will get those as well, unless you have saved different ones under those channel
names.

Nothing changes in the image when I change the “Auto Cuts” settings under Preferences. I’ve checked that I’m adjusting
preferences for the same channel that I’m viewing.

Note: What is the setting for “Cut New” under the New Images section in Preferences for this channel?

If that setting is “Off” then you have elected not to have Ginga apply Auto Levels when an image is loaded in that
channel. Press ‘a’ in the image window to force an auto cut levels and it will use the new settings.

No image shows in the display, and I get an error in the terminal about histogram and keyword “density”.

Note: You need a newer version of NumPy.

I recommend getting NumPy v1.14 or later.

216 Chapter 7. FAQs

CHAPTER

EIGHT

REFERENCE/API

8.1 ginga.canvas.CanvasMixin Module

8.1.1 Classes

CanvasMixin() A CanvasMixin is combined with the CompoundMixin
to make a tag-addressible canvas-like interface.

CanvasMixin

class ginga.canvas.CanvasMixin.CanvasMixin
Bases: object

A CanvasMixin is combined with the CompoundMixin to make a tag-addressible canvas-like interface. This
mixin should precede the CompoundMixin in the inheritance (and so, method resolution) order.

Methods Summary

add(obj[, tag, tagpfx, belowThis, redraw])

deleteAllObjects([redraw])

deleteObject(obj[, redraw])

deleteObjectByTag(tag[, redraw])

deleteObjects(objects[, redraw])

deleteObjectsByTag(tags[, redraw])

delete_all_objects([redraw])

delete_object(obj[, redraw])

delete_object_by_tag(tag[, redraw])

continues on next page

217

https://docs.python.org/3/library/functions.html#object

ginga Documentation, Release 3.3.0

Table 2 – continued from previous page
delete_objects(objects[, redraw])

delete_objects_by_tag(tags[, redraw])

getObjectByTag(tag)

getObjectsByTagpfx(tagpfx)

getTagsByTagpfx(tagpfx)

get_object_by_tag(tag)

get_objects_by_tag_pfx(tagpfx)

get_tags()

get_tags_by_tag_pfx(tagpfx)

has_tag(tag)

lookup_object_tag(obj)

lowerObjectByTag(tag[, belowThis, redraw])

lower_object_by_tag(tag[, belowThis, redraw])

raiseObjectByTag(tag[, aboveThis, redraw])

raise_object_by_tag(tag[, aboveThis, redraw])

redraw([whence])

subcanvas_updated_cb(canvas, whence) This is a notification that a subcanvas (a canvas con-
tained in our canvas) has been modified.

update_canvas([whence])

Methods Documentation

add(obj, tag=None, tagpfx=None, belowThis=None, redraw=True)

deleteAllObjects(redraw=True)

deleteObject(obj, redraw=True)

deleteObjectByTag(tag, redraw=True)

deleteObjects(objects, redraw=True)

deleteObjectsByTag(tags, redraw=True)

delete_all_objects(redraw=True)

delete_object(obj, redraw=True)

218 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

delete_object_by_tag(tag, redraw=True)

delete_objects(objects, redraw=True)

delete_objects_by_tag(tags, redraw=True)

getObjectByTag(tag)

getObjectsByTagpfx(tagpfx)

getTagsByTagpfx(tagpfx)

get_object_by_tag(tag)

get_objects_by_tag_pfx(tagpfx)

get_tags()

get_tags_by_tag_pfx(tagpfx)

has_tag(tag)

lookup_object_tag(obj)

lowerObjectByTag(tag, belowThis=None, redraw=True)

lower_object_by_tag(tag, belowThis=None, redraw=True)

raiseObjectByTag(tag, aboveThis=None, redraw=True)

raise_object_by_tag(tag, aboveThis=None, redraw=True)

redraw(whence=3)

subcanvas_updated_cb(canvas, whence)
This is a notification that a subcanvas (a canvas contained in our canvas) has been modified. We in turn
signal that our canvas has been modified.

update_canvas(whence=3)

8.2 ginga.canvas.CanvasObject Module

8.2.1 Functions

get_canvas_type(name)

get_canvas_types()

register_canvas_type(name, klass)

register_canvas_types(klass_dict)

8.2. ginga.canvas.CanvasObject Module 219

ginga Documentation, Release 3.3.0

get_canvas_type

ginga.canvas.CanvasObject.get_canvas_type(name)

get_canvas_types

ginga.canvas.CanvasObject.get_canvas_types()

register_canvas_type

ginga.canvas.CanvasObject.register_canvas_type(name, klass)

register_canvas_types

ginga.canvas.CanvasObject.register_canvas_types(klass_dict)

8.2.2 Classes

CanvasObjectBase(**kwdargs) This is the abstract base class for a CanvasObject.

CanvasObjectBase

class ginga.canvas.CanvasObject.CanvasObjectBase(**kwdargs)
Bases: ginga.misc.Callback.Callbacks

This is the abstract base class for a CanvasObject. A CanvasObject is an item that can be placed on a ImageView-
Canvas.

This class defines common methods used by all such objects.

Methods Summary

calc_dual_scale_from_pt(pt, detail)

calc_radius(viewer, p1, p2)

calc_rotation_from_pt(pt, detail)

calc_scale_from_pt(pt, detail)

calc_vertexes(start_cx, start_cy, end_cx, end_cy)

canvascoords(viewer, data_x, data_y[, center])

contains(x, y) For backward compatibility.
contains_arr(x_arr, y_arr) For backward compatibility.

continues on next page

220 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 5 – continued from previous page
contains_pt(pt)

contains_pts(points)

convert_mapper(tomap) Converts our object from using one coordinate map
to another.

copy([share])

draw_arrowhead(cr, x1, y1, x2, y2)

draw_caps(cr, cap, points[, radius])

draw_edit(cr, viewer)

get_bbox([points]) Get bounding box of this object.
get_center_pt() Return the geometric average of points as

data_points.
get_cpoints(viewer[, points, no_rotate])

get_data(*args)

get_data_points([points]) Points returned are in data coordinates.
get_llur()

get_move_scale_rotate_pts(viewer) Returns 3 edit control points for editing this object: a
move point, a scale point and a rotate point.

get_num_points()

get_point_by_index(i)

get_points() Get the set of points that is used to draw the object.
get_pt(viewer, points, pt[, canvas_radius]) Takes an array of points points and a target point

pt.
get_reference_pt()

initialize(canvas, viewer, logger)

is_compound()

move_delta(xoff, yoff) For backward compatibility.
move_delta_pt(off_pt)

move_to(xdst, ydst) For backward compatibility.
move_to_pt(dst_pt)

point_within_line(points, p_start, p_stop, ...)

point_within_radius(points, pt, canvas_radius) Points points and point pt are in data coordinates.
rerotate_by_deg(thetas, detail)

rescale_by(scale_x, scale_y, detail) For backward compatibility.
continues on next page

8.2. ginga.canvas.CanvasObject Module 221

ginga Documentation, Release 3.3.0

Table 5 – continued from previous page
rescale_by_factors(factors, detail)

rotate(theta_deg[, xoff, yoff]) For backward compatibility.
rotate_by(theta_deg) For backward compatibility.
rotate_by_deg(thetas)

rotate_deg(thetas, offset)

scale_by(scale_x, scale_y) For backward compatibility.
scale_by_factors(factors)

scale_font(viewer)

select_contains(viewer, x, y) For backward compatibility.
select_contains_pt(viewer, pt)

set_data(**kwdargs)

set_data_points(points) Input points must be in data coordinates, will be
converted to the coordinate space of the object and
stored.

set_point_by_index(i, pt)

setup_edit(detail) subclass should override as necessary.
swapxy(x1, y1, x2, y2)

sync_state() This method called when changes are made to the pa-
rameters.

use_coordmap(mapobj)

within_line(viewer, points, p_start, p_stop, ...) Points points and line endpoints p_start, p_stop
are in data coordinates.

within_radius(viewer, points, pt, canvas_radius) Points points and point pt are in data coordinates.

Methods Documentation

calc_dual_scale_from_pt(pt, detail)

calc_radius(viewer, p1, p2)

calc_rotation_from_pt(pt, detail)

calc_scale_from_pt(pt, detail)

calc_vertexes(start_cx, start_cy, end_cx, end_cy, arrow_length=10, arrow_degrees=0.35)

canvascoords(viewer, data_x, data_y, center=None)

contains(x, y)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use contains_pt() instead.

contains_arr(x_arr, y_arr)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use contains_pts() instead.

contains_pt(pt)

222 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

contains_pts(points)

convert_mapper(tomap)
Converts our object from using one coordinate map to another.

NOTE: In some cases this only approximately preserves the equivalent point values when transforming
between coordinate spaces.

copy(share=[])

draw_arrowhead(cr, x1, y1, x2, y2)

draw_caps(cr, cap, points, radius=None)

draw_edit(cr, viewer)

get_bbox(points=None)
Get bounding box of this object.

Returns
(p1, p2, p3, p4): a 4-tuple of the points in data coordinates,
beginning with the lower-left and proceeding counter-clockwise.

get_center_pt()
Return the geometric average of points as data_points.

get_cpoints(viewer, points=None, no_rotate=False)

get_data(*args)

get_data_points(points=None)
Points returned are in data coordinates.

get_llur()

get_move_scale_rotate_pts(viewer)
Returns 3 edit control points for editing this object: a move point, a scale point and a rotate point. These
points are all in data coordinates.

get_num_points()

get_point_by_index(i)

get_points()
Get the set of points that is used to draw the object.

Points are returned in data coordinates.

get_pt(viewer, points, pt, canvas_radius=None)
Takes an array of points points and a target point pt. Returns the first index of the point that is within the
radius of the target point. If none of the points are within the radius, returns None.

get_reference_pt()

initialize(canvas, viewer, logger)

is_compound()

move_delta(xoff, yoff)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use move_delta_pt instead.

move_delta_pt(off_pt)

move_to(xdst, ydst)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use move_to_pt() instead.

8.2. ginga.canvas.CanvasObject Module 223

ginga Documentation, Release 3.3.0

move_to_pt(dst_pt)

point_within_line(points, p_start, p_stop, canvas_radius)

point_within_radius(points, pt, canvas_radius, scales=(1.0, 1.0))
Points points and point pt are in data coordinates. Return True for points within the circle defined by a
center at point pt and within canvas_radius.

rerotate_by_deg(thetas, detail)

rescale_by(scale_x, scale_y, detail)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use rescale_by_factors() instead.

rescale_by_factors(factors, detail)

rotate(theta_deg, xoff=0, yoff=0)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use rotate_deg() instead.

rotate_by(theta_deg)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use rotate_by_deg() instead.

rotate_by_deg(thetas)

rotate_deg(thetas, offset)

scale_by(scale_x, scale_y)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use scale_by_factors() instead.

scale_by_factors(factors)

scale_font(viewer)

select_contains(viewer, x, y)
For backward compatibility. TO BE DEPRECATED–DO NOT USE. Use select_contains_pt() instead.

select_contains_pt(viewer, pt)

set_data(**kwdargs)

set_data_points(points)
Input pointsmust be in data coordinates, will be converted to the coordinate space of the object and stored.

set_point_by_index(i, pt)

setup_edit(detail)
subclass should override as necessary.

swapxy(x1, y1, x2, y2)

sync_state()
This method called when changes are made to the parameters. subclasses should override if they need any
special state handling.

use_coordmap(mapobj)

within_line(viewer, points, p_start, p_stop, canvas_radius)
Points points and line endpoints p_start, p_stop are in data coordinates. Return True for points within
the line defined by a line from p_start to p_end and within canvas_radius. The distance between points
is scaled by the viewer’s canvas scale.

within_radius(viewer, points, pt, canvas_radius)
Points points and point pt are in data coordinates. Return True for points within the circle defined by a
center at point pt and within canvas_radius. The distance between points is scaled by the canvas scale.

224 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

8.3 ginga.canvas.CompoundMixin Module

8.3.1 Classes

CompoundMixin() A CompoundMixin is a mixin class that makes an object
that is an aggregation of other objects.

CompoundMixin

class ginga.canvas.CompoundMixin.CompoundMixin
Bases: object

A CompoundMixin is a mixin class that makes an object that is an aggregation of other objects.

It is used to make generic compound drawing types as well as (for example) layers of canvases on top of an image.

Methods Summary

addObject(obj[, belowThis])

add_object(obj[, belowThis])

contains_pts(pts)

copy([share])

deleteAllObjects()

deleteObject(obj)

deleteObjects(objects)

delete_all_objects()

delete_object(obj)

delete_objects(objects)

draw(viewer)

getItemsAt(pt)

getObjects()

get_center_pt()

get_edit_points(viewer)

continues on next page

8.3. ginga.canvas.CompoundMixin Module 225

https://docs.python.org/3/library/functions.html#object

ginga Documentation, Release 3.3.0

Table 7 – continued from previous page
get_items_at(pt)

get_llur() Get lower-left and upper-right coordinates of the
bounding box of this compound object.

get_objects()

get_objects_by_kind(kind)

get_objects_by_kinds(kinds)

get_points()

get_reference_pt()

has_object(obj)

inherit_from(obj)

initialize(canvas, viewer, logger)

is_compound()

lowerObject(obj[, belowThis])

lower_object(obj[, belowThis])

move_delta_pt(off_pt)

raiseObject(obj[, aboveThis])

raise_object(obj[, aboveThis])

roll_objects(n)

rotate(theta[, xoff, yoff])

scale_by_factors(factors)

select_contains_pt(viewer, pt)

select_items_at(viewer, pt[, test])

setAttrAll(**kwdargs)

set_attr_all(**kwdargs)

swap_objects()

use_coordmap(mapobj)

226 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Methods Documentation

addObject(obj, belowThis=None)

add_object(obj, belowThis=None)

contains_pts(pts)

copy(share=[])

deleteAllObjects()

deleteObject(obj)

deleteObjects(objects)

delete_all_objects()

delete_object(obj)

delete_objects(objects)

draw(viewer)

getItemsAt(pt)

getObjects()

get_center_pt()

get_edit_points(viewer)

get_items_at(pt)

get_llur()
Get lower-left and upper-right coordinates of the bounding box of this compound object.

Returns
x1, y1, x2, y2: a 4-tuple of the lower-left and upper-right coords

get_objects()

get_objects_by_kind(kind)

get_objects_by_kinds(kinds)

get_points()

get_reference_pt()

has_object(obj)

inherit_from(obj)

initialize(canvas, viewer, logger)

is_compound()

lowerObject(obj, belowThis=None)

lower_object(obj, belowThis=None)

move_delta_pt(off_pt)

raiseObject(obj, aboveThis=None)

raise_object(obj, aboveThis=None)

roll_objects(n)

8.3. ginga.canvas.CompoundMixin Module 227

ginga Documentation, Release 3.3.0

rotate(theta, xoff=0, yoff=0)

scale_by_factors(factors)

select_contains_pt(viewer, pt)

select_items_at(viewer, pt, test=None)

setAttrAll(**kwdargs)

set_attr_all(**kwdargs)

swap_objects()

use_coordmap(mapobj)

8.4 ginga.canvas.coordmap Module

8.4.1 Classes

NativeMapper(viewer) A coordinate mapper that maps to the viewer's canvas in
the viewer's canvas coordinates.

WindowMapper(viewer) A coordinate mapper that maps to the viewer in 'window'
coordinates.

PercentageMapper(viewer) A coordinate mapper that maps to the viewer in 'percent-
age' coordinates.

CartesianMapper(viewer) A coordinate mapper that maps to the viewer in Carte-
sian coordinates that do not scale (unlike DataMapper).

DataMapper(viewer) A coordinate mapper that maps to the viewer in data co-
ordinates.

OffsetMapper(viewer, refobj) A coordinate mapper that maps to the viewer in data co-
ordinates that are offsets relative to some other reference
object.

WCSMapper(viewer) A coordinate mapper that maps to the viewer in WCS
coordinates.

NativeMapper

class ginga.canvas.coordmap.NativeMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer’s canvas in the viewer’s canvas coordinates.

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
continues on next page

228 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 9 – continued from previous page
to_data(cvs_pts[, viewer])

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(cvs_pts, viewer=None)

WindowMapper

class ginga.canvas.coordmap.WindowMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in ‘window’ coordinates.

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
to_data(cvs_pts[, viewer])

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(cvs_pts, viewer=None)

8.4. ginga.canvas.coordmap Module 229

ginga Documentation, Release 3.3.0

PercentageMapper

class ginga.canvas.coordmap.PercentageMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in ‘percentage’ coordinates.

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
to_data(pct_pts[, viewer])

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(pct_pts, viewer=None)

CartesianMapper

class ginga.canvas.coordmap.CartesianMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in Cartesian coordinates that do not scale (unlike DataMapper).

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
to_data(crt_pts[, viewer])

230 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(crt_pts, viewer=None)

DataMapper

class ginga.canvas.coordmap.DataMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in data coordinates.

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
to_data(data_pts[, viewer])

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(data_pts, viewer=None)

8.4. ginga.canvas.coordmap Module 231

ginga Documentation, Release 3.3.0

OffsetMapper

class ginga.canvas.coordmap.OffsetMapper(viewer, refobj)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in data coordinates that are offsets relative to some other reference
object.

Methods Summary

calc_offsets(pts)

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
to_data(delta_pt[, viewer])

Methods Documentation

calc_offsets(pts)

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(delta_pt, viewer=None)

WCSMapper

class ginga.canvas.coordmap.WCSMapper(viewer)
Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in WCS coordinates.

Methods Summary

data_to(data_pts[, viewer])

offset_pt(pts, offset) Offset a point specified by pt, by the offsets offset.
rotate_pt(pts, theta, offset) Rotate a point specified by pt by the angle theta (in

degrees) around the point indicated by offset.
continues on next page

232 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 15 – continued from previous page
to_data(wcs_pts[, viewer])

Methods Documentation

data_to(data_pts, viewer=None)

offset_pt(pts, offset)
Offset a point specified by pt, by the offsets offset. Coordinates are assumed to be in the space defined
by this mapper.

rotate_pt(pts, theta, offset)
Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

to_data(wcs_pts, viewer=None)

8.5 ginga.canvas.DrawingMixin Module

8.5.1 Classes

DrawingMixin() The DrawingMixin is a mixin class that adds drawing
capability for some of the basic CanvasObject-derived
types.

DrawingMixin

class ginga.canvas.DrawingMixin.DrawingMixin
Bases: object

The DrawingMixin is a mixin class that adds drawing capability for some of the basic CanvasObject-derived
types. The set_surface method is used to associate a ImageViewCanvas object for layering on.

Methods Summary

add_draw_mode(name, **kwargs)

clear_selected()

draw(viewer)

draw_motion(canvas, event, data_x, data_y, ...)

draw_poly_add(canvas, event, data_x, data_y, ...)

draw_poly_delete(canvas, event, data_x, ...)

continues on next page

8.5. ginga.canvas.DrawingMixin Module 233

https://docs.python.org/3/library/functions.html#object

ginga Documentation, Release 3.3.0

Table 17 – continued from previous page
draw_start(canvas, event, data_x, data_y, viewer)

draw_stop(canvas, event, data_x, data_y, viewer)

edit_delete()

edit_delete_cb(canvas, event, data_x, ...)

edit_motion(canvas, event, data_x, data_y, ...)

edit_poly_add(canvas, event, data_x, data_y, ...)

edit_poly_delete(canvas, event, data_x, ...)

edit_rotate(delta_deg, viewer)

edit_scale(delta_x, delta_y, viewer)

edit_select(newobj)

edit_start(canvas, event, data_x, data_y, viewer)

edit_stop(canvas, event, data_x, data_y, viewer)

enable_draw(tf)

enable_edit(tf)

getDrawClass(drawtype)

get_draw_class(drawtype)

get_draw_classes()

get_draw_mode()

get_drawparams()

get_drawtype()

get_drawtypes()

get_edit_object()

get_selected()

is_drawing()

is_editing()

continues on next page

234 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 17 – continued from previous page
is_selected(obj)

num_selected()

pick_hover(canvas, event, data_x, data_y, viewer)

pick_key(canvas, event, data_x, data_y, viewer)

pick_motion(canvas, event, data_x, data_y, ...)

pick_start(canvas, event, data_x, data_y, viewer)

pick_stop(canvas, event, data_x, data_y, viewer)

process_drawing()

register_canvas_type(name, klass)

register_for_cursor_drawing(viewer)

select_add(obj)

select_remove(obj)

setSurface(viewer)

set_draw_mode(mode)

set_drawcolor(colorname)

set_drawtype(drawtype, **drawparams)

set_surface(viewer)

Methods Documentation

add_draw_mode(name, **kwargs)

clear_selected()

draw(viewer)

draw_motion(canvas, event, data_x, data_y, viewer)

draw_poly_add(canvas, event, data_x, data_y, viewer)

draw_poly_delete(canvas, event, data_x, data_y, viewer)

draw_start(canvas, event, data_x, data_y, viewer)

draw_stop(canvas, event, data_x, data_y, viewer)

edit_delete()

edit_delete_cb(canvas, event, data_x, data_y, viewer)

8.5. ginga.canvas.DrawingMixin Module 235

ginga Documentation, Release 3.3.0

edit_motion(canvas, event, data_x, data_y, viewer)

edit_poly_add(canvas, event, data_x, data_y, viewer)

edit_poly_delete(canvas, event, data_x, data_y, viewer)

edit_rotate(delta_deg, viewer)

edit_scale(delta_x, delta_y, viewer)

edit_select(newobj)

edit_start(canvas, event, data_x, data_y, viewer)

edit_stop(canvas, event, data_x, data_y, viewer)

enable_draw(tf)

enable_edit(tf)

getDrawClass(drawtype)

get_draw_class(drawtype)

get_draw_classes()

get_draw_mode()

get_drawparams()

get_drawtype()

get_drawtypes()

get_edit_object()

get_selected()

is_drawing()

is_editing()

is_selected(obj)

num_selected()

pick_hover(canvas, event, data_x, data_y, viewer)

pick_key(canvas, event, data_x, data_y, viewer)

pick_motion(canvas, event, data_x, data_y, viewer)

pick_start(canvas, event, data_x, data_y, viewer)

pick_stop(canvas, event, data_x, data_y, viewer)

process_drawing()

register_canvas_type(name, klass)

register_for_cursor_drawing(viewer)

select_add(obj)

select_remove(obj)

setSurface(viewer)

set_draw_mode(mode)

set_drawcolor(colorname)

236 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

set_drawtype(drawtype, **drawparams)

set_surface(viewer)

8.6 ginga.canvas.types.layer Module

8.6.1 Classes

CompoundObject(*objects, **kwdargs) Compound object on a ImageViewCanvas.
Canvas(*objects, **kwdargs) Class to handle canvas in Ginga.
DrawingCanvas(**kwdargs) Drawing canvas.

CompoundObject

class ginga.canvas.types.layer.CompoundObject(*objects, **kwdargs)
Bases: ginga.canvas.CompoundMixin.CompoundMixin, ginga.canvas.CanvasObject.
CanvasObjectBase

Compound object on a ImageViewCanvas. Parameters are the child objects making up the compound object.
Objects are drawn in the order listed. Example:

This makes a point inside a circle.

Methods Summary

get_params_metadata()

Methods Documentation

classmethod get_params_metadata()

Canvas

class ginga.canvas.types.layer.Canvas(*objects, **kwdargs)
Bases: ginga.canvas.CanvasMixin.CanvasMixin, ginga.canvas.types.layer.CompoundObject

Class to handle canvas in Ginga.

8.6. ginga.canvas.types.layer Module 237

ginga Documentation, Release 3.3.0

Methods Summary

get_params_metadata()

Methods Documentation

classmethod get_params_metadata()

DrawingCanvas

class ginga.canvas.types.layer.DrawingCanvas(**kwdargs)
Bases: ginga.Mixins.UIMixin, ginga.canvas.DrawingMixin.DrawingMixin, ginga.canvas.types.
layer.Canvas

Drawing canvas.

8.6.2 Class Inheritance Diagram

Callbacks CanvasObjectBase

Canvas

DrawingCanvas

CanvasMixin

CompoundObject

CompoundMixin

UIMixin

DrawingMixin

8.7 ginga.ImageView Module

This module handles image viewers.

8.7.1 Classes

ImageViewBase([logger, rgbmap, settings]) An abstract base class for displaying images represented
by Numpy data arrays.

238 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

ImageViewBase

class ginga.ImageView.ImageViewBase(logger=None, rgbmap=None, settings=None)
Bases: ginga.misc.Callback.Callbacks

An abstract base class for displaying images represented by Numpy data arrays.

This class attempts to do as much of the image handling as possible using Numpy array manipulations (even
color and intensity mapping) so that only a minimal mapping to a pixel buffer is necessary in concrete subclasses
that connect to an actual rendering surface (e.g., Qt, GTK, Tk, HTML5).

Parameters
logger [Logger or None] Logger for tracing and debugging. If not given, one will be created.

rgbmap [RGBMapper or None] RGB mapper object. If not given, one will be created.

settings [SettingGroup or None] Viewer preferences. If not given, one will be created.

Attributes Summary

vname

vtypes

Methods Summary

apply_profile(profile[, keylist]) Apply a profile to the viewer.
apply_profile_or_settings(image) Apply a profile to the viewer.
auto_levels([autocuts]) Apply auto-cut levels on the image view.
auto_orient() Set the orientation for the image to a reasonable de-

fault.
autocut_params_cb(setting, value) Handle callback related to changes in auto-cut levels.
canvas_changed_cb(canvas, whence) Handle callback for when canvas has changed.
canvascoords(data_x, data_y[, center]) Same as get_canvas_xy().
capture_profile(profile)

center_cursor() Center the cursor in the viewer's widget, in both X
and Y.

center_image([no_reset]) Pan to the center of the image.
check_cursor_location() Check whether the data location of the last known

position of the cursor has changed.
checkpoint_profile()

clear() Clear the displayed image.
configure(width, height) See set_window_size().
configure_surface(width, height) See configure().
copy_attributes(dst_fi, attrlist[, share, ...]) Copy interesting attributes of our configuration to an-

other image view.
copy_to_dst(target) Extract our image and call set_image() on the tar-

get with it.
continues on next page

8.7. ginga.ImageView Module 239

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

Table 23 – continued from previous page
cut_levels(loval, hival[, no_reset]) Apply cut levels on the image view.
cut_levels_cb(setting, value) Handle callback related to changes in cut levels.
data_to_offset(data_x, data_y[, center]) Reverse of offset_to_data().
define_cursor(cname, cursor) Define a viewer cursor under a name.
delayed_redraw() Handle delayed redrawing of the canvas.
enable_auto_orient(tf) Set auto_orient behavior.
enable_autocenter(option) Set autocenter behavior.
enable_autocuts(option) Set autocuts behavior.
enable_autozoom(option) Set autozoom behavior.
get_autocenter_options() Get all valid autocenter options.
get_autocut_methods() Same as ginga.AutoCuts.AutoCutsBase.

get_algorithms().
get_autocuts_options() Get all valid autocuts options.
get_autozoom_options() Get all valid autozoom options.
get_bg() Get the background color.
get_canvas() Get the canvas object used by this instance.
get_canvas_image() Get canvas image object.
get_canvas_pt(data_pt) Similar to get_canvas_xy(), except that it takes a

single array of points.
get_canvas_xy(data_x, data_y[, center]) Reverse of get_data_xy().
get_center() Get image center.
get_color_algorithms() Get available color distribution algorithm names.
get_coordmap(key) Get coordinate mapper.
get_cursor(cname) Get the cursor stored under the name.
get_cut_levels() Get cut levels.
get_data(data_x, data_y) Get the data value at the given position.
get_data_pct(xpct, ypct) Calculate new data size for the given axis ratios.
get_data_pt(win_pt) Similar to get_data_xy(), except that it takes a sin-

gle array of points.
get_data_size() Get the dimensions of the image currently being dis-

played.
get_data_xy(win_x, win_y[, center]) Get the closest coordinates in the data array to those

reported on the window.
get_dataobj() Get the image currently being displayed.
get_datarect() Get the approximate LL and UR corners of the dis-

played image.
get_desired_size() Get desired size.
get_dims(data) Get the first two dimensions of Numpy array data.
get_draw_rect() Get the coordinates in the actual data corresponding

to the area needed for drawing images for the current
zoom level and pan.

get_fg() Get the foreground color.
get_image() Get the image currently being displayed.
get_image_as_array([order]) Get the current image shown in the viewer, with any

overlaid graphics, in a numpy array with channels as
needed and ordered.

get_image_as_buffer([output, order]) Get the current image shown in the viewer, with any
overlaid graphics, in a IO buffer with channels as
needed and ordered by the back end widget.

get_last_data_xy() Get the last position of the cursor in data coordinates.
continues on next page

240 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 23 – continued from previous page
get_last_win_xy() Get the last position of the cursor in window coordi-

nates.
get_limits([coord]) Get the bounding box of the viewer extents.
get_logger() Get the logger used by this instance.
get_pan([coord]) Get pan positions.
get_pan_rect() Get the coordinates in the actual data corresponding

to the area shown in the display for the current zoom
level and pan.

get_pixel_distance(x1, y1, x2, y2) Calculate distance between the given pixel positions.
get_plain_image_as_widget() Get the current image shown in the viewer, without

any overlaid graphics, in the format of an image wid-
get in the back end toolkit.

get_private_canvas() Get the private canvas object used by this instance.
get_refresh_stats() Return the measured statistics for timed refresh inter-

vals.
get_rgb_image_as_buffer([output, format, ...]) Get the current image shown in the viewer, with any

overlaid graphics, in a file IO-like object encoded as
a bitmap graphics file.

get_rgb_image_as_bytes([format, quality]) Get the current image shown in the viewer, with any
overlaid graphics, in the form of a buffer in the form
of bytes.

get_rgb_image_as_widget([output, format, ...]) Get the current image shown in the viewer, with any
overlaid graphics, in the form of a image widget in
the toolkit of the back end.

get_rgb_order() Get RGB order.
get_rgbmap() Get the RGB map object used by this instance.
get_rotation() Get image rotation angle.
get_rotation_info() Get rotation information.
get_scale() Same as get_scale_max().
get_scale_base_xy() Get stretch factors.
get_scale_limits() Get scale limits.
get_scale_max() Get maximum scale factor.
get_scale_min() Get minimum scale factor.
get_scale_text() Report current scaling in human-readable format.
get_scale_xy() Get scale factors.
get_settings() Get the settings used by this instance.
get_transforms() Get transformations behavior.
get_vip() Get the ViewerImageProxy object used by this in-

stance.
get_window_size() Get the window size in the underlying implementa-

tion.
get_zoom() Get zoom level.
get_zoom_algorithm() Get zoom algorithm.
get_zoomrate() Get zoom rate.
getwin_array([order, alpha, dtype])

getwin_buffer([order, alpha, dtype]) Same as getwin_array(), but with the output array
converted to C-order Python bytes.

icc_profile_cb(setting, value) Handle callback related to changes in output ICC pro-
files.

initialize_private_canvas(private_canvas) Initialize the private canvas used by this instance.
continues on next page

8.7. ginga.ImageView Module 241

ginga Documentation, Release 3.3.0

Table 23 – continued from previous page
interpolation_change_cb(setting, value) Handle callback related to changes in interpolation.
invert_cmap() Invert the color map.
is_compound() Indicate if canvas object is a compound object.
is_redraw_pending() Indicates whether a deferred redraw has been sched-

uled.
make_cursor(iconpath, x, y) Make a cursor in the viewer's native widget toolkit.
make_timer() Return a timer object implemented using the back

end.
offset_to_data(off_x, off_y[, center]) Get the closest coordinates in the data array to those

in cartesian fixed (non-scaled) canvas coordinates.
offset_to_window(off_x, off_y) Convert data offset to window coordinates.
onscreen_message(text[, delay, redraw]) Place a message onscreen in the viewer window.
onscreen_message_off () Erase any message onscreen in the viewer window.
pan_cb(setting, value) Handle callback related to changes in pan.
panset_pct(pct_x, pct_y) Similar to set_pan(), except that pan positions are

determined by multiplying data dimensions with the
given scale factors, where 1 is 100%.

panset_xy(data_x, data_y[, no_reset]) Similar to set_pan(), except that input pan posi-
tions are always in data space.

position_at_canvas_xy(data_pt, canvas_pt[, ...]) Position a data point at a certain canvas position.
position_cursor(data_x, data_y) Position the current cursor to a location defined it data

coords.
prepare_image(cvs_img, cache, whence) This can be overridden by subclasses.
recalc_transforms([trcat]) Takes a catalog of transforms (trcat) and builds the

chain of default transforms necessary to do rendering
with most backends.

redraw([whence]) Redraw the canvas.
redraw_data([whence]) Render image from RGB map and redraw private

canvas.
redraw_now([whence]) Redraw the displayed image.
refresh_timer_cb(timer, flags) Refresh timer callback.
reload_image()

reschedule_redraw(time_sec) Reschedule redraw event.
reset_limits() Reset the bounding box of the viewer extents.
restore_cmap() Restores the color map from any rotation, stretch

and/or shrinkage.
restore_contrast() Restores the color map from any stretch and/or

shrinkage.
rgbmap_cb(rgbmap) Handle callback for when RGB map has changed.
rotate(deg) Rotate the view of an image in a channel.
rotation_change_cb(setting, value) Handle callback related to changes in rotation angle.
save_plain_image_as_file(filepath[, format,
...])

Save the current image shown in the viewer, without
any overlaid graphics, in a file with the specified for-
mat and quality.

save_profile(**params) Save the given parameters into profile settings.
save_rgb_image_as_file(filepath[, format, ...]) Save the current image shown in the viewer, with any

overlaid graphics, in a file with the specified format
and quality.

scale_and_shift_cmap(scale_pct, shift_pct) Stretch and/or shrink the color map.
scale_cb(setting, value) Handle callback related to image scaling.

continues on next page

242 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Table 23 – continued from previous page
scale_to(scale_x, scale_y[, no_reset]) Scale the image in a channel.
set_autocenter(option) Set autocenter behavior.
set_autocut_params(method, **params) Set auto-cut parameters.
set_autocuts(autocuts) Set the auto-cut algorithm.
set_background(bg) Set the background color.
set_bg(r, g, b) Set the background color.
set_calg(dist) Set color distribution algorithm.
set_canvas(canvas[, private_canvas]) Set the canvas object.
set_cmap(cm) Set color map.
set_color_algorithm(calg_name, **kwdargs) Set the color distribution algorithm.
set_color_map(cmap_name) Set the color map.
set_coordmap(key, mapper) Set coordinate mapper.
set_cursor(cursor) Set the cursor in the viewer widget.
set_data(data[, metadata]) Set an image to be displayed by providing raw data.
set_dataobj(image[, add_to_canvas]) Set an image to be displayed.
set_desired_size(width, height) See set_window_size().
set_enter_focus(tf) Determine whether the viewer widget should take fo-

cus when the cursor enters the window.
set_fg(r, g, b) Set the foreground color.
set_foreground(fg) Set the foreground color.
set_image(image[, add_to_canvas]) Set an image to be displayed.
set_imap(im) Set intensity map.
set_intensity_map(imap_name) Set the intensity map.
set_limits(limits[, coord]) Set the bounding box of the viewer extents.
set_name(name) Set viewer name.
set_onscreen_message(text[, redraw]) Called by a subclass to update the onscreen message.
set_pan(pan_x, pan_y[, coord, no_reset]) Set pan position.
set_redraw_lag(lag_sec) Set lag time for redrawing the canvas.
set_refresh_rate(fps) Set the refresh rate for redrawing the canvas at a timed

interval.
set_renderer(renderer) Set and initialize the renderer used by this instance.
set_rgbmap(rgbmap) Set RGB map object used by this instance.
set_scale(scale[, no_reset]) Scale the image in a channel.
set_scale_base_xy(scale_x_base, scale_y_base) Set stretch factors.
set_scale_limits(scale_min, scale_max) Set scale limits.
set_window_size(width, height) Report the size of the window to display the image.
set_zoom_algorithm(name) Set zoom algorithm.
set_zoomrate(zoomrate) Set zoom rate.
shift_cmap(pct) Shift color map.
show_color_bar(tf[, side])

show_focus_indicator(tf[, color])

show_mode_indicator(tf[, corner])

show_pan_mark(tf[, color])

start_refresh () Start redrawing the canvas at the previously set timed
interval.

stop_refresh () Stop redrawing the canvas at the previously set timed
interval.

continues on next page

8.7. ginga.ImageView Module 243

ginga Documentation, Release 3.3.0

Table 23 – continued from previous page
switch_cursor(cname) Switch the viewer's cursor to the one defined under a

name.
take_focus() Have the widget associated with this viewer take the

keyboard focus.
transform(flip_x, flip_y, swap_xy) Transform view of the image.
transform_cb(setting, value) Handle callback related to changes in transforma-

tions.
update_image()

update_widget() Update the area corresponding to the backend widget.
viewable(dataobj) Test whether dataobj is viewable by this viewer.
window_has_origin_upper() Indicate if window of backend toolkit is implemented

with an origin up or down.
window_to_offset(win_x, win_y) Reverse of offset_to_window().
zoom_fit([axis, no_reset]) Zoom to fit display window.
zoom_in([incr]) Zoom in a level.
zoom_out([decr]) Zoom out a level.
zoom_to(zoomlevel[, no_reset]) Set zoom level in a channel.
zoomsetting_change_cb(setting, value) Handle callback related to changes in zoom.

Attributes Documentation

vname = 'Ginga Image'

vtypes = [<class 'ginga.BaseImage.BaseImage'>]

Methods Documentation

apply_profile(profile, keylist=None)
Apply a profile to the viewer.

Parameters
profile [SettingGroup]

This function is used to initialize the viewer to a known state.
The keylist, if given, will limit the items to be transferred
from the profile to viewer settings, otherwise all items are
copied.

apply_profile_or_settings(image)
Apply a profile to the viewer.

Parameters
image [AstroImage or RGBImage] Image object.

This function is used to initialize the viewer when a new image
is loaded. Either the embedded profile settings or the default
settings are applied as specified in the channel preferences.

auto_levels(autocuts=None)
Apply auto-cut levels on the image view.

244 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Parameters
autocuts [subclass of AutoCutsBase or None] An object that implements the desired auto-

cut algorithm. If not given, use algorithm from preferences.

auto_orient()
Set the orientation for the image to a reasonable default.

autocut_params_cb(setting, value)
Handle callback related to changes in auto-cut levels.

canvas_changed_cb(canvas, whence)
Handle callback for when canvas has changed.

canvascoords(data_x, data_y, center=None)
Same as get_canvas_xy().

capture_profile(profile)

center_cursor()
Center the cursor in the viewer’s widget, in both X and Y.

This should be implemented by subclasses.

center_image(no_reset=True)
Pan to the center of the image.

Parameters
no_reset [bool] See set_pan().

check_cursor_location()
Check whether the data location of the last known position of the cursor has changed. If so, issue a callback.

checkpoint_profile()

clear()
Clear the displayed image.

configure(width, height)
See set_window_size().

configure_surface(width, height)
See configure().

copy_attributes(dst_fi, attrlist, share=False, whence=0)
Copy interesting attributes of our configuration to another image view.

Parameters
dst_fi [subclass of ImageViewBase] Another instance of image view.

attrlist [list] A list of attribute names to copy. They can be 'transforms', 'rotation',
'cutlevels', 'rgbmap', 'zoom', 'pan', 'autocuts', 'limits', 'icc' or
'interpolation'.

share [bool] If True, the designated settings will be shared, otherwise the values are simply
copied.

copy_to_dst(target)
Extract our image and call set_image() on the target with it.

Parameters
target Subclass of ImageViewBase.

8.7. ginga.ImageView Module 245

https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

cut_levels(loval, hival, no_reset=False)
Apply cut levels on the image view.

Parameters
loval, hival [float] Low and high values of the cut levels, respectively.

no_reset [bool] Do not reset autocuts setting.

cut_levels_cb(setting, value)
Handle callback related to changes in cut levels.

data_to_offset(data_x, data_y, center=None)
Reverse of offset_to_data().

define_cursor(cname, cursor)
Define a viewer cursor under a name. Does not change the current cursor.

Parameters
cname [str] name of the cursor to define.

cursor [object] a cursor object in the back end’s toolkit

`cursor` is usually constructed from `make_cursor`.
delayed_redraw()

Handle delayed redrawing of the canvas.

enable_auto_orient(tf)
Set auto_orient behavior.

Parameters
tf [bool] Turns automatic image orientation on or off.

enable_autocenter(option)
Set autocenter behavior.

Parameters
option [{‘on’, ‘override’, ‘once’, ‘off’}] Option for auto-center behavior. A list of acceptable

options can also be obtained by get_autocenter_options().

Raises
ginga.ImageView.ImageViewError Invalid option.

enable_autocuts(option)
Set autocuts behavior.

Parameters
option [{‘on’, ‘override’, ‘once’, ‘off’}] Option for auto-cut behavior. A list of acceptable

options can also be obtained by get_autocuts_options().

Raises
ginga.ImageView.ImageViewError Invalid option.

enable_autozoom(option)
Set autozoom behavior.

Parameters
option [{‘on’, ‘override’, ‘once’, ‘off’}] Option for zoom behavior. A list of acceptable op-

tions can also be obtained by get_autozoom_options().

246 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Raises
ginga.ImageView.ImageViewError Invalid option.

get_autocenter_options()
Get all valid autocenter options.

Returns
autocenter_options [tuple] A list of valid options.

get_autocut_methods()
Same as ginga.AutoCuts.AutoCutsBase.get_algorithms().

get_autocuts_options()
Get all valid autocuts options.

Returns
autocuts_options [tuple] A list of valid options.

get_autozoom_options()
Get all valid autozoom options.

Returns
autozoom_options [tuple] A list of valid options.

get_bg()
Get the background color.

Returns
img_bg [tuple] RGB values.

get_canvas()
Get the canvas object used by this instance.

Returns
canvas [DrawingCanvas] Canvas.

get_canvas_image()
Get canvas image object.

Returns
imgobj [NormImage] Normalized image sitting on the canvas.

get_canvas_pt(data_pt)
Similar to get_canvas_xy(), except that it takes a single array of points.

get_canvas_xy(data_x, data_y, center=None)
Reverse of get_data_xy().

get_center()
Get image center.

Returns
ctr [tuple] X and Y positions, in that order.

get_color_algorithms()
Get available color distribution algorithm names. See ginga.ColorDist.get_dist_names().

get_coordmap(key)
Get coordinate mapper.

8.7. ginga.ImageView Module 247

ginga Documentation, Release 3.3.0

Parameters
key [str] Name of the desired coordinate mapper.

Returns
mapper Coordinate mapper object (see ginga.canvas.coordmap).

get_cursor(cname)
Get the cursor stored under the name. This can be overridden by subclasses, if necessary.

Parameters
cname [str] name of the cursor to return.

get_cut_levels()
Get cut levels.

Returns
cuts [tuple] Low and high values, in that order.

get_data(data_x, data_y)
Get the data value at the given position. Indices are zero-based, as in Numpy.

Parameters
data_x, data_y [int] Data indices for X and Y, respectively.

Returns
value Data value.

get_data_pct(xpct, ypct)
Calculate new data size for the given axis ratios. See get_limits().

Parameters
xpct, ypct [float] Ratio for X and Y, respectively, where 1 is 100%.

Returns
x, y [int] Scaled dimensions.

get_data_pt(win_pt)
Similar to get_data_xy(), except that it takes a single array of points.

get_data_size()
Get the dimensions of the image currently being displayed.

Returns
size [tuple] Image dimensions in the form of (width, height).

get_data_xy(win_x, win_y, center=None)
Get the closest coordinates in the data array to those reported on the window.

Parameters
win_x, win_y [float or ndarray] Window coordinates.

center [bool] If True, then the coordinates are mapped such that the pixel is centered on the
square when the image is zoomed in past 1X. This is the specification of the FITS image
standard, that the pixel is centered on the integer row/column.

Returns
coord [tuple] Data coordinates in the form of (x, y).

248 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#True

ginga Documentation, Release 3.3.0

get_dataobj()
Get the image currently being displayed.

Returns
image [AstroImage or RGBImage] Image object.

get_datarect()
Get the approximate LL and UR corners of the displayed image.

Returns
rect [tuple] Bounding box in data coordinates in the form of (x1, y1, x2, y2).

get_desired_size()
Get desired size.

Returns
size [tuple] Desired size in the form of (width, height).

get_dims(data)
Get the first two dimensions of Numpy array data. Data may have more dimensions, but they are not
reported.

Returns
dims [tuple] Data dimensions in the form of (width, height).

get_draw_rect()
Get the coordinates in the actual data corresponding to the area needed for drawing images for the current
zoom level and pan. Unlike get_pan_rect(), this includes areas outside of the current viewport, but that
might be viewed with a transformation or rotation subsequently applied.

Returns
points [list] Coordinates in the form of [(x0, y0), (x1, y1), (x2, y2), (x3, y3)]

corresponding to the four corners.

get_fg()
Get the foreground color.

Returns
img_fg [tuple] RGB values.

get_image()
Get the image currently being displayed.

Returns
image [AstroImage or RGBImage] Image object.

get_image_as_array(order=None)
Get the current image shown in the viewer, with any overlaid graphics, in a numpy array with channels as
needed and ordered.

This can be overridden by subclasses.

get_image_as_buffer(output=None, order=None)
Get the current image shown in the viewer, with any overlaid graphics, in a IO buffer with channels as
needed and ordered by the back end widget.

This can be overridden by subclasses.

Parameters

8.7. ginga.ImageView Module 249

ginga Documentation, Release 3.3.0

output [a file IO-like object or None] open python IO descriptor or None to have one created

Returns
buffer [file IO-like object] This will be the one passed in, unless output is None in which

case a BytesIO obejct is returned

get_last_data_xy()
Get the last position of the cursor in data coordinates. This can be overridden by subclasses, if necessary.

get_last_win_xy()
Get the last position of the cursor in window coordinates. This can be overridden by subclasses, if necessary.

get_limits(coord='data')
Get the bounding box of the viewer extents.

Returns
limits [tuple]

Bounding box in coordinates of type coord in the form of (ll_pt, ur_pt).
get_logger()

Get the logger used by this instance.

Returns
logger [Logger] Logger.

get_pan(coord='data')
Get pan positions.

Parameters
coord [{‘data’, ‘wcs’}] Indicates whether the pan positions are returned in data or WCS

space.

Returns
positions [tuple] X and Y positions, in that order.

get_pan_rect()
Get the coordinates in the actual data corresponding to the area shown in the display for the current zoom
level and pan.

Returns
points [list] Coordinates in the form of [(x0, y0), (x1, y1), (x2, y2), (x3, y3)]

from lower-left to lower-right.

get_pixel_distance(x1, y1, x2, y2)
Calculate distance between the given pixel positions.

Parameters
x1, y1, x2, y2 [number] Pixel coordinates.

Returns
dist [float] Rounded distance.

get_plain_image_as_widget()
Get the current image shown in the viewer, without any overlaid graphics, in the format of an image widget in
the back end toolkit. Typically used for generating thumbnails. This should be implemented by subclasses.

Returns

250 Chapter 8. Reference/API

https://docs.python.org/3/library/logging.html#logging.Logger

ginga Documentation, Release 3.3.0

widget [object] An image widget object in the viewer’s back end toolkit

get_private_canvas()
Get the private canvas object used by this instance.

Returns
canvas [DrawingCanvas] Canvas.

get_refresh_stats()
Return the measured statistics for timed refresh intervals.

Returns
stats [float] The measured rate of actual back end updates in frames per second.

get_rgb_image_as_buffer(output=None, format='png', quality=90)
Get the current image shown in the viewer, with any overlaid graphics, in a file IO-like object encoded as
a bitmap graphics file.

This can be overridden by subclasses.

Parameters
output [a file IO-like object or None] open python IO descriptor or None to have one created

format [str] A string defining the format to save the image. Typically at least ‘jpeg’ and ‘png’
are supported. (default: ‘png’)

quality: int The quality metric for saving lossy compressed formats.

Returns
buffer [file IO-like object] This will be the one passed in, unless output is None in which

case a BytesIO obejct is returned

get_rgb_image_as_bytes(format='png', quality=90)
Get the current image shown in the viewer, with any overlaid graphics, in the form of a buffer in the form
of bytes.

Parameters
format [str] See get_rgb_image_as_buffer().

quality: int See get_rgb_image_as_buffer().

Returns
buffer [bytes] The window contents as a buffer in the form of bytes.

get_rgb_image_as_widget(output=None, format='png', quality=90)
Get the current image shown in the viewer, with any overlaid graphics, in the form of a image widget in the
toolkit of the back end.

Parameters
See [meth:get_rgb_image_as_buffer.]

Returns
widget [object] An image widget object in the viewer’s back end toolkit

get_rgb_order()
Get RGB order.

Returns

8.7. ginga.ImageView Module 251

ginga Documentation, Release 3.3.0

rgb [str] Returns the order of RGBA planes required by the subclass to render the canvas
properly.

get_rgbmap()
Get the RGB map object used by this instance.

Returns
rgbmap [RGBMapper] RGB map.

get_rotation()
Get image rotation angle.

Returns
rot_deg [float] Rotation angle in degrees.

get_rotation_info()
Get rotation information.

Returns
info [tuple] X and Y positions, and rotation angle in degrees, in that order.

get_scale()
Same as get_scale_max().

get_scale_base_xy()
Get stretch factors.

Returns
stretchfactors [tuple] Stretch factors for X and Y, in that order.

get_scale_limits()
Get scale limits.

Returns
scale_limits [tuple] Minimum and maximum scale limits, respectively.

get_scale_max()
Get maximum scale factor.

Returns
scalefactor [float] Scale factor for X or Y, whichever is larger.

get_scale_min()
Get minimum scale factor.

Returns
scalefactor [float] Scale factor for X or Y, whichever is smaller.

get_scale_text()
Report current scaling in human-readable format.

Returns
text [str] '<num> x' if enlarged, or '1/<num> x' if shrunken.

get_scale_xy()
Get scale factors.

Returns
scalefactors [tuple] Scale factors for X and Y, in that order.

252 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

get_settings()
Get the settings used by this instance.

Returns
settings [SettingGroup] Settings.

get_transforms()
Get transformations behavior.

Returns
transforms [tuple] Selected options for flip_x, flip_y, and swap_xy.

get_vip()
Get the ViewerImageProxy object used by this instance.

Returns
vip [ViewerImageProxy] A ViewerImageProxy object.

get_window_size()
Get the window size in the underlying implementation.

Returns
size [tuple] Window size in the form of (width, height).

get_zoom()
Get zoom level.

Returns
zoomlevel [float] Zoom level.

get_zoom_algorithm()
Get zoom algorithm.

Returns
name [str] Name of the zoom algorithm in use.

get_zoomrate()
Get zoom rate.

Returns
zoomrate [float] Zoom rate.

getwin_array(order='RGB', alpha=1.0, dtype=None)

getwin_buffer(order='RGB', alpha=1.0, dtype=None)
Same as getwin_array(), but with the output array converted to C-order Python bytes.

icc_profile_cb(setting, value)
Handle callback related to changes in output ICC profiles.

initialize_private_canvas(private_canvas)
Initialize the private canvas used by this instance.

interpolation_change_cb(setting, value)
Handle callback related to changes in interpolation.

invert_cmap()
Invert the color map. See ginga.RGBMap.RGBMapper.invert_cmap().

8.7. ginga.ImageView Module 253

ginga Documentation, Release 3.3.0

is_compound()
Indicate if canvas object is a compound object. This can be re-implemented by subclasses that can overplot
objects.

Returns
status [bool] Currently, this always returns False.

is_redraw_pending()
Indicates whether a deferred redraw has been scheduled.

Returns
pending [bool] True if a deferred redraw is pending, False otherwise.

make_cursor(iconpath, x, y)
Make a cursor in the viewer’s native widget toolkit. This should be implemented by subclasses.

Parameters
iconpath [str] the path to a PNG image file defining the cursor

x [int] the X position of the center of the cursor hot spot

y [int] the Y position of the center of the cursor hot spot

make_timer()
Return a timer object implemented using the back end. This should be implemented by subclasses.

Returns
timer [a Timer object]

offset_to_data(off_x, off_y, center=None)
Get the closest coordinates in the data array to those in cartesian fixed (non-scaled) canvas coordinates.

Parameters
off_x, off_y [float or ndarray] Cartesian canvas coordinates.

Returns
coord [tuple] Data coordinates in the form of (x, y).

offset_to_window(off_x, off_y)
Convert data offset to window coordinates.

Parameters
off_x, off_y [float or ndarray] Data offsets.

Returns
coord [tuple] Offset in window coordinates in the form of (x, y).

onscreen_message(text, delay=None, redraw=True)
Place a message onscreen in the viewer window. This must be implemented by subclasses.

Parameters
text [str] the text to draw in the window

delay [float or None] if None, the message will remain until another message is set. If a float,
specifies the time in seconds before the message will be erased. (default: None)

redraw [bool] True if the widget should be redrawn right away (so that the message appears).
(default: True)

254 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#False

ginga Documentation, Release 3.3.0

onscreen_message_off()
Erase any message onscreen in the viewer window.

pan_cb(setting, value)
Handle callback related to changes in pan.

panset_pct(pct_x, pct_y)
Similar to set_pan(), except that pan positions are determined by multiplying data dimensions with the
given scale factors, where 1 is 100%.

panset_xy(data_x, data_y, no_reset=False)
Similar to set_pan(), except that input pan positions are always in data space.

position_at_canvas_xy(data_pt, canvas_pt, no_reset=False)
Position a data point at a certain canvas position. Calculates and sets the pan position necessary to position
a data point precisely at a point on the canvas.

Parameters
data_pt [tuple] data point to position, must include x and y (x, y).

canvas_pt [tuple] canvas coordinate (cx, cy) where data point should end up.

no_reset [bool] See set_pan().

position_cursor(data_x, data_y)
Position the current cursor to a location defined it data coords. This should be implemented by subclasses.

Parameters
data_x [float] the X position to position the cursor in data coords

data_y [float] the X position to position the cursor in data coords

prepare_image(cvs_img, cache, whence)
This can be overridden by subclasses.

recalc_transforms(trcat=None)
Takes a catalog of transforms (trcat) and builds the chain of default transforms necessary to do rendering
with most backends.

redraw(whence=0)
Redraw the canvas.

Parameters
whence [int or float] Optimization flag that reduces the time to refresh the viewer by only

recalculating what is necessary:

0: New image, pan/scale has changed 1: Cut levels or similar has changed 2: Color
mapping has changed 2.3: ICC profile has changed 2.5: Transforms have changed 2.6:
Rotation has changed 3: Graphical overlays have changed

redraw_data(whence=0)
Render image from RGB map and redraw private canvas.

Note: Do not call this method unless you are implementing a subclass.

Parameters
whence See redraw().

8.7. ginga.ImageView Module 255

ginga Documentation, Release 3.3.0

redraw_now(whence=0)
Redraw the displayed image.

Parameters
whence See redraw().

refresh_timer_cb(timer, flags)
Refresh timer callback. This callback will normally only be called internally.

Parameters
timer [a Ginga GUI timer] A GUI-based Ginga timer

flags [dict-like] A set of flags controlling the timer

reload_image()

reschedule_redraw(time_sec)
Reschedule redraw event.

This should be implemented by subclasses.

Parameters
time_sec [float] Time, in seconds, to wait.

reset_limits()
Reset the bounding box of the viewer extents.

Parameters
None

restore_cmap()
Restores the color map from any rotation, stretch and/or shrinkage. See ginga.RGBMap.RGBMapper.
restore_cmap().

restore_contrast()
Restores the color map from any stretch and/or shrinkage. See ginga.RGBMap.RGBMapper.
reset_sarr().

rgbmap_cb(rgbmap)
Handle callback for when RGB map has changed.

rotate(deg)
Rotate the view of an image in a channel.

Note: Transforming the image is generally faster than rotating, if rotating in 90 degree increments. Also
see transform().

Parameters
deg [float] Rotation angle in degrees.

rotation_change_cb(setting, value)
Handle callback related to changes in rotation angle.

save_plain_image_as_file(filepath, format='png', quality=90)
Save the current image shown in the viewer, without any overlaid graphics, in a file with the specified format
and quality. Typically used for generating thumbnails. This should be implemented by subclasses.

Parameters

256 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

filepath [str] path of the file to write

format [str] See get_rgb_image_as_buffer().

quality: int See get_rgb_image_as_buffer().

save_profile(**params)
Save the given parameters into profile settings.

Parameters
params [dict] Keywords and values to be saved.

save_rgb_image_as_file(filepath, format='png', quality=90)
Save the current image shown in the viewer, with any overlaid graphics, in a file with the specified format
and quality. This can be overridden by subclasses.

Parameters
filepath [str] path of the file to write

format [str] See get_rgb_image_as_buffer().

quality: int See get_rgb_image_as_buffer().

scale_and_shift_cmap(scale_pct, shift_pct)
Stretch and/or shrink the color map. See ginga.RGBMap.RGBMapper.scale_and_shift().

scale_cb(setting, value)
Handle callback related to image scaling.

scale_to(scale_x, scale_y, no_reset=False)
Scale the image in a channel. This only changes the viewer settings; the image is not modified in any way.
Also see zoom_to().

Parameters
scale_x, scale_y [float] Scaling factors for the image in the X and Y axes, respectively.

no_reset [bool] Do not reset autozoom setting.

set_autocenter(option)
Set autocenter behavior.

Parameters
option [{‘on’, ‘override’, ‘once’, ‘off’}] Option for auto-center behavior. A list of acceptable

options can also be obtained by get_autocenter_options().

Raises
ginga.ImageView.ImageViewError Invalid option.

set_autocut_params(method, **params)
Set auto-cut parameters.

Parameters
method [str] Auto-cut algorithm. A list of acceptable options can be obtained by
get_autocut_methods().

params [dict] Algorithm-specific keywords and values.

set_autocuts(autocuts)
Set the auto-cut algorithm.

Parameters

8.7. ginga.ImageView Module 257

ginga Documentation, Release 3.3.0

autocuts [subclass of AutoCutsBase] An object that implements the desired auto-cut algo-
rithm.

set_background(bg)
Set the background color.

Parameters
bg [str or tuple of float] color name or tuple of floats, between 0 and 1, inclusive.

set_bg(r, g, b)
Set the background color.

Parameters
r, g, b [float] RGB values, which should be between 0 and 1, inclusive.

set_calg(dist)
Set color distribution algorithm. See ginga.RGBMap.RGBMapper.set_dist().

set_canvas(canvas, private_canvas=None)
Set the canvas object.

Parameters
canvas [DrawingCanvas] Canvas object.

private_canvas [DrawingCanvas or None] Private canvas object. If not given, this is the
same as canvas.

set_cmap(cm)
Set color map. See ginga.RGBMap.RGBMapper.set_cmap().

set_color_algorithm(calg_name, **kwdargs)
Set the color distribution algorithm.

Available color distribution algorithm names can be discovered using ginga.ColorDist.
get_dist_names().

Parameters
calg_name [str] The name of a color distribution algorithm.

kwdargs [dict] Keyword arguments for color distribution object (see ColorDist).

set_color_map(cmap_name)
Set the color map.

Available color map names can be discovered using get_names().

Parameters
cmap_name [str] The name of a color map.

set_coordmap(key, mapper)
Set coordinate mapper.

Parameters
key [str] Name of the coordinate mapper.

mapper Coordinate mapper object (see ginga.canvas.coordmap).

set_cursor(cursor)
Set the cursor in the viewer widget. This should be implemented by subclasses.

Parameters

258 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

cursor [object] a cursor object in the back end’s toolkit

set_data(data, metadata=None)
Set an image to be displayed by providing raw data.

This is a convenience method for first constructing an image with AstroImage and then calling
set_image().

Parameters
data [ndarray] This should be at least a 2D Numpy array.

metadata [dict or None] Image metadata mapping keywords to their respective values.

set_dataobj(image, add_to_canvas=True)
Set an image to be displayed.

If there is no error, the 'image-unset' and 'image-set' callbacks will be invoked.

Parameters
image [AstroImage or RGBImage] 2D Image object.

add_to_canvas [bool] Add image to canvas.

set_desired_size(width, height)
See set_window_size().

set_enter_focus(tf)
Determine whether the viewer widget should take focus when the cursor enters the window.

Parameters
tf [bool] If True the widget will grab focus when the cursor moves into the window.

set_fg(r, g, b)
Set the foreground color.

Parameters
r, g, b [float] RGB values, which should be between 0 and 1, inclusive.

set_foreground(fg)
Set the foreground color.

Parameters
fg [str or tuple of float] color name or tuple of floats, between 0 and 1, inclusive.

set_image(image, add_to_canvas=True)
Set an image to be displayed.

If there is no error, the 'image-unset' and 'image-set' callbacks will be invoked.

Parameters
image [AstroImage or RGBImage] 2D Image object.

add_to_canvas [bool] Add image to canvas.

set_imap(im)
Set intensity map. See ginga.RGBMap.RGBMapper.set_imap().

set_intensity_map(imap_name)
Set the intensity map.

Available intensity map names can be discovered using ginga.imap.get_names().

8.7. ginga.ImageView Module 259

https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

Parameters
imap_name [str] The name of an intensity map.

set_limits(limits, coord='data')
Set the bounding box of the viewer extents.

Parameters
limits [tuple or None] A tuple setting the extents of the viewer in the form of (ll_pt,
ur_pt).

set_name(name)
Set viewer name.

set_onscreen_message(text, redraw=True)
Called by a subclass to update the onscreen message.

Parameters
text [str] The text to show in the display.

set_pan(pan_x, pan_y, coord='data', no_reset=False)
Set pan position.

Parameters
pan_x, pan_y [float] Pan positions in X and Y.

coord [{‘data’, ‘wcs’}] Indicates whether the given pan positions are in data or WCS space.

no_reset [bool] Do not reset autocenter setting.

set_redraw_lag(lag_sec)
Set lag time for redrawing the canvas.

Parameters
lag_sec [float] Number of seconds to wait.

set_refresh_rate(fps)
Set the refresh rate for redrawing the canvas at a timed interval.

Parameters
fps [float] Desired rate in frames per second.

set_renderer(renderer)
Set and initialize the renderer used by this instance.

set_rgbmap(rgbmap)
Set RGB map object used by this instance. It controls how the values in the image are mapped to color.

Parameters
rgbmap [RGBMapper] RGB map.

set_scale(scale, no_reset=False)
Scale the image in a channel. Also see zoom_to().

Parameters
scale [tuple of float] Scaling factors for the image in the X and Y axes.

no_reset [bool] Do not reset autozoom setting.

set_scale_base_xy(scale_x_base, scale_y_base)
Set stretch factors.

260 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

Parameters
scale_x_base, scale_y_base [float] Stretch factors for X and Y, respectively.

set_scale_limits(scale_min, scale_max)
Set scale limits.

Parameters
scale_min, scale_max [float] Minimum and maximum scale limits, respectively.

set_window_size(width, height)
Report the size of the window to display the image.

Callbacks
Will call any callbacks registered for the 'configure' event. Callbacks should have a method signature
of:

(viewer, width, height, ...)

Note: This is called by the subclass with width and height as soon as the actual dimensions of the
allocated window are known.

Parameters
width [int] The width of the window in pixels.

height [int] The height of the window in pixels.

set_zoom_algorithm(name)
Set zoom algorithm.

Parameters
name [str] Name of a zoom algorithm to use.

set_zoomrate(zoomrate)
Set zoom rate.

Parameters
zoomrate [float] Zoom rate.

shift_cmap(pct)
Shift color map. See ginga.RGBMap.RGBMapper.shift().

show_color_bar(tf, side='bottom')

show_focus_indicator(tf, color='white')

show_mode_indicator(tf, corner='ur')

show_pan_mark(tf, color='red')

start_refresh()
Start redrawing the canvas at the previously set timed interval.

stop_refresh()
Stop redrawing the canvas at the previously set timed interval.

switch_cursor(cname)
Switch the viewer’s cursor to the one defined under a name.

8.7. ginga.ImageView Module 261

ginga Documentation, Release 3.3.0

Parameters
cname [str] name of the cursor to switch to.

take_focus()
Have the widget associated with this viewer take the keyboard focus. This should be implemented by
subclasses, if they have a widget that can take focus.

transform(flip_x, flip_y, swap_xy)
Transform view of the image.

Note: Transforming the image is generally faster than rotating, if rotating in 90 degree increments. Also
see rotate().

Parameters
flipx, flipy [bool] If True, flip the image in the X and Y axes, respectively

swapxy [bool] If True, swap the X and Y axes.

transform_cb(setting, value)
Handle callback related to changes in transformations.

update_image()

update_widget()
Update the area corresponding to the backend widget. This must be implemented by subclasses.

classmethod viewable(dataobj)
Test whether dataobj is viewable by this viewer.

window_has_origin_upper()
Indicate if window of backend toolkit is implemented with an origin up or down.

Returns
res [bool] Returns True if the origin is up, False otherwise.

window_to_offset(win_x, win_y)
Reverse of offset_to_window().

zoom_fit(axis='lock', no_reset=False)
Zoom to fit display window. Pan the image and scale the view to fit the size of the set limits (usually set to
the image size). Parameter axis can be used to set which axes are allowed to be scaled; if set to ‘lock’ then
all axes are scaled in such a way as to keep the scale factor uniform between axes. Also see zoom_to().

Parameters
axis [str] One of: ‘x’, ‘y’, ‘xy’, or ‘lock’ (default).

no_reset [bool] Do not reset autozoom setting.

zoom_in(incr=1.0)
Zoom in a level. Also see zoom_to().

Parameters
incr [float (optional, defaults to 1)] The value to increase the zoom level

zoom_out(decr=1.0)
Zoom out a level. Also see zoom_to().

Parameters

262 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

ginga Documentation, Release 3.3.0

decr [float (optional, defaults to 1)] The value to decrease the zoom level

zoom_to(zoomlevel, no_reset=False)
Set zoom level in a channel. This only changes the relevant settings; The image is not modified. Also see
scale_to().

Note: In addition to the given zoom level, other zoom settings are defined for the channel in preferences.

Parameters
zoomlevel [int] The zoom level to zoom the image. Negative value to zoom out; positive to

zoom in.

no_reset [bool] Do not reset autozoom setting.

zoomsetting_change_cb(setting, value)
Handle callback related to changes in zoom.

8.8 ginga.rv.main Module

This module handles the main reference viewer.

8.8.1 Classes

ReferenceViewer([layout, plugins]) This class exists solely to be able to customize the refer-
ence viewer startup.

8.8. ginga.rv.main Module 263

ginga Documentation, Release 3.3.0

ReferenceViewer

class ginga.rv.main.ReferenceViewer(layout=['seq', {}, ['vbox', {'name': 'top', 'width': 1400, 'height': 700},
{'row': ['hbox', {'name': 'menu'}], 'stretch': 0}, {'row': ['hpanel',
{'name': 'hpnl'}, ['ws', {'name': 'left', 'wstype': 'tabs', 'width': 300,
'height': - 1, 'group': 2}, [('Info', ['vpanel', {}, ['ws', {'name': 'uleft',
'wstype': 'stack', 'height': 250, 'group': 3}], ['ws', {'name': 'lleft',
'wstype': 'tabs', 'height': 330, 'group': 3}]])]], ['vbox', {'name':
'main', 'width': 600}, {'row': ['ws', {'name': 'channels', 'wstype':
'tabs', 'group': 1, 'use_toolbar': True, 'default': True}], 'stretch': 1},
{'row': ['ws', {'name': 'cbar', 'wstype': 'stack', 'group': 99}], 'stretch':
0}, {'row': ['ws', {'name': 'readout', 'wstype': 'stack', 'group': 99}],
'stretch': 0}, {'row': ['ws', {'name': 'operations', 'wstype': 'stack',
'group': 99}], 'stretch': 0}], ['ws', {'name': 'right', 'wstype': 'tabs',
'width': 400, 'height': - 1, 'group': 2}, [('Dialogs', ['ws', {'name':
'dialogs', 'wstype': 'tabs', 'group': 2}])]]], 'stretch': 1}, {'row': ['ws',
{'name': 'toolbar', 'wstype': 'stack', 'height': 40, 'group': 2}], 'stretch':
0}, {'row': ['hbox', {'name': 'status'}], 'stretch': 0}]],
plugins=[{'module': 'Operations', 'workspace': 'operations', 'start':
True, 'hidden': True, 'category': 'System', 'menu': 'Operations [G]',
'ptype': 'global'}, {'module': 'Toolbar', 'workspace': 'toolbar', 'start':
True, 'hidden': True, 'category': 'System', 'menu': 'Toolbar [G]',
'ptype': 'global'}, {'module': 'Pan', 'workspace': 'uleft', 'start': True,
'hidden': True, 'category': 'System', 'menu': 'Pan [G]', 'ptype':
'global'}, {'module': 'Info', 'tab': 'Synopsis', 'workspace': 'lleft', 'start':
True, 'hidden': True, 'category': 'System', 'menu': 'Info [G]', 'ptype':
'global'}, {'module': 'Thumbs', 'tab': 'Thumbs', 'workspace': 'right',
'start': True, 'hidden': True, 'category': 'System', 'menu': 'Thumbs
[G]', 'ptype': 'global'}, {'module': 'Contents', 'tab': 'Contents',
'workspace': 'right', 'start': True, 'hidden': True, 'category': 'System',
'menu': 'Contents [G]', 'ptype': 'global'}, {'module': 'Colorbar',
'workspace': 'cbar', 'start': True, 'hidden': True, 'category': 'System',
'menu': 'Colorbar [G]', 'ptype': 'global'}, {'module': 'Cursor',
'workspace': 'readout', 'start': True, 'hidden': True, 'category':
'System', 'menu': 'Cursor [G]', 'ptype': 'global'}, {'module': 'Errors',
'tab': 'Errors', 'workspace': 'right', 'start': True, 'hidden': True,
'category': 'System', 'menu': 'Errors [G]', 'ptype': 'global'}, {'module':
'Downloads', 'tab': 'Downloads', 'workspace': 'right', 'start': False,
'menu': 'Downloads [G]', 'category': 'Utils', 'ptype': 'global'},
{'module': 'Blink', 'tab': 'Blink Channels', 'workspace': 'right', 'start':
False, 'menu': 'Blink Channels [G]', 'category': 'Analysis', 'ptype':
'global'}, {'module': 'Blink', 'workspace': 'dialogs', 'menu': 'Blink
Images', 'category': 'Analysis', 'ptype': 'local'}, {'module': 'Crosshair',
'workspace': 'left', 'category': 'Analysis', 'ptype': 'local'}, {'module':
'Cuts', 'workspace': 'dialogs', 'category': 'Analysis', 'ptype': 'local'},
{'module': 'LineProfile', 'workspace': 'dialogs', 'category':
'Analysis.Datacube', 'ptype': 'local'}, {'module': 'Histogram',
'workspace': 'dialogs', 'category': 'Analysis', 'ptype': 'local'},
{'module': 'Overlays', 'workspace': 'dialogs', 'category': 'Analysis',
'ptype': 'local'}, {'module': 'Pick', 'workspace': 'dialogs', 'category':
'Analysis', 'ptype': 'local'}, {'module': 'PixTable', 'workspace':
'dialogs', 'category': 'Analysis', 'ptype': 'local'}, {'module': 'TVMark',
'workspace': 'dialogs', 'category': 'Analysis', 'ptype': 'local'},
{'module': 'TVMask', 'workspace': 'dialogs', 'category': 'Analysis',
'ptype': 'local'}, {'module': 'WCSMatch', 'tab': 'WCSMatch',
'workspace': 'right', 'start': False, 'menu': 'WCS Match [G]',
'category': 'Analysis', 'ptype': 'global'}, {'module': 'Command', 'tab':
'Command', 'workspace': 'lleft', 'start': False, 'menu': 'Command Line
[G]', 'category': 'Debug', 'ptype': 'global'}, {'module': 'Log', 'tab':
'Log', 'workspace': 'right', 'start': False, 'menu': 'Logger Info [G]',
'category': 'Debug', 'ptype': 'global'}, {'module': 'MultiDim',
'workspace': 'lleft', 'category': 'Navigation', 'ptype': 'local'},
{'module': 'RC', 'tab': 'RC', 'workspace': 'right', 'start': False, 'menu':
'Remote Control [G]', 'category': 'Remote', 'ptype': 'global'},
{'module': 'SAMP', 'tab': 'SAMP', 'workspace': 'right', 'start': False,
'menu': 'SAMP Client [G]', 'category': 'Remote', 'ptype': 'global'},
{'module': 'Compose', 'workspace': 'dialogs', 'category': 'RGB',
'ptype': 'local'}, {'module': 'ScreenShot', 'workspace': 'dialogs',
'category': 'RGB', 'ptype': 'local'}, {'module': 'ColorMapPicker',
'tab': 'ColorMapPicker', 'menu': 'Set Color Map [G]', 'workspace':
'right', 'start': False, 'category': 'RGB', 'ptype': 'global'}, {'module':
'PlotTable', 'workspace': 'dialogs', 'category': 'Table', 'ptype': 'local'},
{'module': 'Catalogs', 'workspace': 'dialogs', 'category': 'Utils',
'ptype': 'local'}, {'module': 'Drawing', 'workspace': 'dialogs',
'category': 'Utils', 'ptype': 'local'}, {'module': 'FBrowser',
'workspace': 'dialogs', 'category': 'Utils', 'ptype': 'local'}, {'module':
'ChangeHistory', 'tab': 'History', 'workspace': 'right', 'menu': 'History
[G]', 'start': False, 'category': 'Utils', 'ptype': 'global'}, {'module':
'Mosaic', 'workspace': 'dialogs', 'category': 'Utils', 'ptype': 'local'},
{'module': 'Collage', 'workspace': 'dialogs', 'category': 'Utils', 'ptype':
'local'}, {'module': 'FBrowser', 'tab': 'Open File', 'workspace': 'right',
'menu': 'Open File [G]', 'start': False, 'category': 'Utils', 'ptype':
'global'}, {'module': 'Preferences', 'workspace': 'dialogs', 'category':
'Utils', 'ptype': 'local'}, {'module': 'Ruler', 'workspace': 'dialogs',
'category': 'Utils', 'ptype': 'local'}, {'module': 'SaveImage', 'tab':
'SaveImage', 'workspace': 'right', 'menu': 'Save File [G]', 'start':
False, 'category': 'Utils', 'ptype': 'global'}, {'module': 'WCSAxes',
'workspace': 'dialogs', 'category': 'Utils', 'ptype': 'local'}, {'module':
'WBrowser', 'tab': 'Help', 'workspace': 'channels', 'start': False,
'menu': 'Help [G]', 'category': 'Help', 'ptype': 'global'}, {'module':
'Header', 'tab': 'Header', 'workspace': 'left', 'start': False, 'menu':
'Header [G]', 'hidden': False, 'category': 'Utils', 'ptype': 'global'},
{'module': 'Zoom', 'tab': 'Zoom', 'workspace': 'left', 'start': False,
'menu': 'Zoom [G]', 'category': 'Utils', 'ptype': 'global'}])

Bases: object

264 Chapter 8. Reference/API

https://docs.python.org/3/library/functions.html#object

ginga Documentation, Release 3.3.0

This class exists solely to be able to customize the reference viewer startup.

Methods Summary

add_default_options(argprs) Adds the default reference viewer startup options to
an ArgumentParser instance argprs.

add_default_plugins([except_global, ...]) Add the ginga-distributed default set of plugins to the
reference viewer.

add_global_plugin(module_name, ws_name[,
...])
add_global_plugin_spec(spec)

add_local_plugin(module_name, ws_name[, ...])

add_local_plugin_spec(spec)

add_plugin_spec(spec)

add_separately_distributed_plugins()

clear_default_plugins()

main(options, args) Main routine for running the reference viewer.

Methods Documentation

add_default_options(argprs)
Adds the default reference viewer startup options to an ArgumentParser instance argprs.

add_default_plugins(except_global=[], except_local=[])
Add the ginga-distributed default set of plugins to the reference viewer.

add_global_plugin(module_name, ws_name, path=None, klass=None, category='Global',
tab_name=None, start_plugin=True, pfx=None)

add_global_plugin_spec(spec)

add_local_plugin(module_name, ws_name, path=None, klass=None, pfx=None, category=None)

add_local_plugin_spec(spec)

add_plugin_spec(spec)

add_separately_distributed_plugins()

clear_default_plugins()

main(options, args)
Main routine for running the reference viewer.

options is a OptionParser object that has been populated with values from parsing the command line. It
should at least include the options from add_default_options()

args is a list of arguments to the viewer after parsing out options. It should contain a list of files or URLs
to load.

8.8. ginga.rv.main Module 265

ginga Documentation, Release 3.3.0

8.9 ginga.colors Module

Module to handle colors supported by Ginga.

8.9.1 Functions

recalc_color_list() Recalculate ginga.colors.color_list.
lookup_color(name[, format]) Find RGB or hex values for a supported color.
resolve_color(color) Return RGB tuple of a given color.
add_color(name, tup) Add (color, RGB to ginga.colors.color_list.
remove_color(name) Remove a given color from ginga.colors.

color_list.
get_colors() Return ginga.colors.color_list.
scan_rgbtxt(filepath) Parse colors from a given filename.
scan_rgbtxt_buf (buf) Parse colors from a given string buffer.

recalc_color_list

ginga.colors.recalc_color_list()
Recalculate ginga.colors.color_list.

lookup_color

ginga.colors.lookup_color(name, format='tuple')
Find RGB or hex values for a supported color.

name [str] Color name (e.g., 'red') or hash (e.g., '#ff0000'). Color name is case-sensitive.

format [{‘tuple’, ‘hash’}] Desired output to be an RGB tuple or hash.

Returns
color [tuple or str] Color value as specified by format.

Raises
KeyError Color name is not supported.

ValueError Invalid format.

resolve_color

ginga.colors.resolve_color(color)
Return RGB tuple of a given color.

266 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

add_color

ginga.colors.add_color(name, tup)
Add (color, RGB to ginga.colors.color_list.

remove_color

ginga.colors.remove_color(name)
Remove a given color from ginga.colors.color_list.

get_colors

ginga.colors.get_colors()
Return ginga.colors.color_list.

scan_rgbtxt

ginga.colors.scan_rgbtxt(filepath)
Parse colors from a given filename.

scan_rgbtxt_buf

ginga.colors.scan_rgbtxt_buf(buf)
Parse colors from a given string buffer.

8.10 ginga.AutoCuts Module

8.10.1 Functions

get_autocuts(name) Return the class object used to implement an autocuts
algorithm.

get_autocuts_names() Return the list of algorithm names for the available au-
tocuts methods.

get_autocuts

ginga.AutoCuts.get_autocuts(name)
Return the class object used to implement an autocuts algorithm.

Parameters
name [str] The name of the algorithm

Returns
klass [subclass of AutoCutsBase] A class implementing the auto cut levels algorithm

8.10. ginga.AutoCuts Module 267

ginga Documentation, Release 3.3.0

get_autocuts_names

ginga.AutoCuts.get_autocuts_names()
Return the list of algorithm names for the available autocuts methods.

Returns
names [list of str] A list of the known auto cut levels algorithm names

8.10.2 Classes

AutoCutsBase(logger) Base class for auto cuts algorithms.
Minmax(logger) Calculate the cut levels as the minimum and maximum

of the data.
Histogram(logger[, usecrop, sample, ...]) Calculate the cut levels based on a histogram analysis of

the data.
StdDev(logger[, usecrop, sample, ...]) Calculate the cut levels based on a standard deviation

analysis of the data.
MedianFilter(logger[, num_points, length]) Calculate the cut levels based on a median filtering anal-

ysis of the data.
ZScale(logger[, contrast, num_points]) Calculate the cut levels based on a median filtering anal-

ysis of the data.

AutoCutsBase

class ginga.AutoCuts.AutoCutsBase(logger)
Bases: object

Base class for auto cuts algorithms.

Methods Summary

calc_cut_levels(image) Calculate the cut levels of an image according to the
parameters.

calc_cut_levels_data(data_np) Calculate the cut levels of a ndarray according to the
parameters.

cut_levels(data_np, loval, hival[, vmin, vmax]) Apply the cut levels to data.
get_algorithms() Return the list of autocuts algorithms.
get_autocut_levels(image) Calculate the cut levels of an image according to the

parameters.
get_crop(image[, crop_radius]) Get a cropped region of data from an image.
get_crop_data(data[, crop_radius]) Get a cropped region of data from a ndarray.
get_full(image[, px_limit]) Get the full (or cropped) array of data from an image.
get_params_metadata()

get_sample(image[, num_points]) Return a sample from the full data array of the passed
image.

get_sample_data(data[, num_points]) Return a sample from a data array.
update_params(**param_dict)

268 Chapter 8. Reference/API

https://docs.python.org/3/library/functions.html#object

ginga Documentation, Release 3.3.0

Methods Documentation

calc_cut_levels(image)
Calculate the cut levels of an image according to the parameters.

Parameters
image [subclass of BaseImage] Image object from which the cut levels should be calculated

Returns
cut_levels [tuple of float (loval, hival)] The cut levels that were calculated

calc_cut_levels_data(data_np)
Calculate the cut levels of a ndarray according to the parameters.

Parameters
data_np [ndarray] A numpy array of data from which the cut levels should be calculated

Returns
cut_levels [tuple of float (loval, hival)] The cut levels that were calculated

cut_levels(data_np, loval, hival, vmin=0.0, vmax=255.0)
Apply the cut levels to data.

Parameters
data_np [ndarray] A numpy array of data to which the cut levels should be applied

loval [float] The low cut level

hival [float] The high cut level

vmin [float (optional, default 0.0)] The floor of the range which is the output of the cut levels

vmax [float (optional, default 255.0)] The ceiling of the range which is the output of the cut
levels

Returns
result [ndarray] The result of applying the cut levels to the input array

get_algorithms()
Return the list of autocuts algorithms.

Parameters
None

Returns
names: tuple of str The names of the autocut algorithms

get_autocut_levels(image)
Calculate the cut levels of an image according to the parameters.

Parameters
image [subclass of BaseImage] Image object from which the cut levels should be calculated

Returns
cut_levels [tuple of float (loval, hival)] The cut levels that were calculated

get_crop(image, crop_radius=None)
Get a cropped region of data from an image.

8.10. ginga.AutoCuts Module 269

ginga Documentation, Release 3.3.0

Parameters
image [subclass of BaseImage] Image object from which the cut levels should be calculated

crop_radius [int (optional, default None)] The radius of a crop region to extract from the
image. If None, then the radius will default to the crop_radius attribute.

Returns
result [ndarray] The cropped data

get_crop_data(data, crop_radius=None)
Get a cropped region of data from a ndarray.

Parameters
data [ndarray] Image data from which the data should be cropped

crop_radius [int (optional, default None)] The radius of a crop region to extract from the
image data. If None, then the radius will default to the crop_radius attribute.

Returns
result [ndarray] The cropped data

get_full(image, px_limit=None)
Get the full (or cropped) array of data from an image.

Parameters
image [subclass of BaseImage] Image object from which the cut levels should be calculated

px_limit [int (optional, default None)] The limit for extracting the full image data. If the
number of pixels in the data is larger than this value, a crop from the data will be used
instead.

Returns
result [ndarray] The (possibly cropped) data

classmethod get_params_metadata()

get_sample(image, num_points=None)
Return a sample from the full data array of the passed image.

Parameters
image [subclass of BaseImage] Image object from which the cut levels should be calculated

num_points [int (optional, default None)] Specifies the number of points to sample. If None,
the number pixels will be calculated to a “reasonable representative sample”.

Returns
result [ndarray] The sampled data

get_sample_data(data, num_points=None)
Return a sample from a data array.

Parameters
data [ndarray] Image data from which the data should be sampled

num_points [int (optional, default None)] Specifies the number of points to sample. If None,
the number pixels will be calculated to a “reasonable representative sample”.

Returns

270 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

result [ndarray] The sampled data

update_params(**param_dict)

Minmax

class ginga.AutoCuts.Minmax(logger)
Bases: ginga.AutoCuts.AutoCutsBase

Calculate the cut levels as the minimum and maximum of the data.

The calculation is: loval = min(sample_data) hival = max(sample_data)

Parameters
logger [Logger] Logger for tracing and debugging.

Methods Summary

calc_cut_levels(image) See subclass documentation.
calc_cut_levels_data(data_np) See subclass documentation.

Methods Documentation

calc_cut_levels(image)
See subclass documentation.

calc_cut_levels_data(data_np)
See subclass documentation.

Histogram

class ginga.AutoCuts.Histogram(logger, usecrop=None, sample='crop', full_px_limit=None,
num_points=None, pct=0.999, numbins=2048)

Bases: ginga.AutoCuts.AutoCutsBase

Calculate the cut levels based on a histogram analysis of the data.

Parameters
logger [Logger] Logger for tracing and debugging.

sample [str (optional, ‘crop’, ‘grid’, or ‘full’, default: ‘crop’)] Specifies how to access the image
for calculation: - crop: crop an area from the middle of the image - grid: sample data in a
grid pattern across the image - full: use the full image data

full_px_limit [int (optional, defaults to 1M)] Specifies the limit for using the full data if sample
== ‘full’. If the number of pixels in the image is larger than this, then the image will fall back
to using a crop.

num_points [int (optional, defaults to None)] Specifies the number of points in the grid if sample
== ‘grid’, or the diameter of the crop, if sample == ‘crop’ (or ‘full’ and number of pixels
exceeds full_px_limit). If None, the number pixels will be calculated to a “reasonable
representative sample”.

8.10. ginga.AutoCuts Module 271

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger

ginga Documentation, Release 3.3.0

pct [float (optional, range: 0.0 - 1.0, defaults to 0.999)] Specifies the percentage of the histogram
bins to retain

numbins [int (optional, defaults to 2048)] Specifies the number of bins used in calculating the
histogram

Methods Summary

calc_cut_levels(image) See subclass documentation.
calc_cut_levels_data(data_np) See subclass documentation.
calc_histogram(data[, pct, numbins]) Internal function used by this class.
get_params_metadata()

Methods Documentation

calc_cut_levels(image)
See subclass documentation.

calc_cut_levels_data(data_np)
See subclass documentation.

calc_histogram(data, pct=1.0, numbins=2048)
Internal function used by this class.

classmethod get_params_metadata()

StdDev

class ginga.AutoCuts.StdDev(logger, usecrop=None, sample='grid', full_px_limit=None, num_points=None,
hensa_lo=- 1.5, hensa_hi=4.0)

Bases: ginga.AutoCuts.AutoCutsBase

Calculate the cut levels based on a standard deviation analysis of the data.

The calculation is: loval = hensa_lo * sdev(sample_data) + mean(sample_data) hival = hensa_hi *
sdev(sample_data) + mean(sample_data)

Parameters
logger [Logger] Logger for tracing and debugging.

sample [str (optional, ‘crop’, ‘grid’, or ‘full’, default: ‘crop’)] Specifies how to access the image
for calculation: - crop: crop an area from the middle of the image - grid: sample data in a
grid pattern across the image - full: use the full image data

full_px_limit [int (optional, defaults to 1M)] Specifies the limit for using the full data if sample
== ‘full’. If the number of pixels in the image is larger than this, then the image will fall back
to using a crop.

num_points [int (optional, defaults to None)] Specifies the number of points in the grid if sample
== ‘grid’, or the diameter of the crop, if sample == ‘crop’ (or ‘full’ and number of pixels
exceeds full_px_limit). If None, the number pixels will be calculated to a “reasonable
representative sample”.

272 Chapter 8. Reference/API

https://docs.python.org/3/library/logging.html#logging.Logger

ginga Documentation, Release 3.3.0

hensa_lo [float (optional, defaults to -1.5)] Specifies the low cut multiplication factor to apply
to the standard deviation before adding the median (usually < 0)

hensa_hi [float (optional, defaults to 4.0)] Specifies the low cut multiplication factor to apply to
the standard deviation before adding the median (usually > 0)

Methods Summary

calc_cut_levels(image) See subclass documentation.
calc_cut_levels_data(data_np) See subclass documentation.
calc_stddev(data[, hensa_lo, hensa_hi]) Internal function used by this class.
get_params_metadata()

Methods Documentation

calc_cut_levels(image)
See subclass documentation.

calc_cut_levels_data(data_np)
See subclass documentation.

calc_stddev(data, hensa_lo=- 1.5, hensa_hi=4.0)
Internal function used by this class.

classmethod get_params_metadata()

MedianFilter

class ginga.AutoCuts.MedianFilter(logger, num_points=2000, length=5)
Bases: ginga.AutoCuts.AutoCutsBase

Calculate the cut levels based on a median filtering analysis of the data.

The calculation is: out = median_filter(sample_data, size=length) loval, hival = min(out), max(out)

Parameters
logger [Logger] Logger for tracing and debugging.

num_points [int (optional, defaults to None)] Specifies the number of points to sample making
up the grid. If None, the number of points will be calculated to a “reasonable representative
sample”.

length [int (optional, defaults to 5)] Specifies the size of the median filter to apply to the data

8.10. ginga.AutoCuts Module 273

https://docs.python.org/3/library/logging.html#logging.Logger

ginga Documentation, Release 3.3.0

Methods Summary

calc_cut_levels(image) See subclass documentation.
calc_cut_levels_data(data_np) See subclass documentation.
calc_medianfilter(data[, length]) Internal function used by this class.
get_params_metadata()

Methods Documentation

calc_cut_levels(image)
See subclass documentation.

calc_cut_levels_data(data_np)
See subclass documentation.

calc_medianfilter(data, length=5)
Internal function used by this class.

classmethod get_params_metadata()

ZScale

class ginga.AutoCuts.ZScale(logger, contrast=0.25, num_points=None)
Bases: ginga.AutoCuts.AutoCutsBase

Calculate the cut levels based on a median filtering analysis of the data.

Based on STScI’s numdisplay implementation of IRAF’s ZScale.

The calculation is: local, hival = zscale(sample_data, contrast)

Parameters
logger [Logger] Logger for tracing and debugging.

contrast [float (optional, range: 0.0 - 1.0, defaults to 0.25)] Specifies the contrast parameter to
use in the zscale calculation

num_points [int (optional, defaults to None)] Specifies the number of points to sample making
up the grid. If None, the number of points will be calculated to a “reasonable representative
sample”.

Methods Summary

calc_cut_levels(image) See subclass documentation.
calc_cut_levels_data(data_np) See subclass documentation.
calc_zscale(data[, contrast, num_points]) Internal function used by this class.
get_params_metadata()

274 Chapter 8. Reference/API

https://docs.python.org/3/library/logging.html#logging.Logger

ginga Documentation, Release 3.3.0

Methods Documentation

calc_cut_levels(image)
See subclass documentation.

calc_cut_levels_data(data_np)
See subclass documentation.

calc_zscale(data, contrast=0.25, num_points=1000)
Internal function used by this class.

classmethod get_params_metadata()

8.11 ginga.util.io.io_asdf Module

Module wrapper for loading ASDF files.

Note: The API for this module is currently unstable and may change in a future release.

8.11.1 Functions

load_file(filepath[, idx, logger]) Load an object from an ASDF file.
load_asdf (asdf_obj[, idx, logger]) Load data from an open ASDF object.
load_from_asdf (asdf_obj[, data_key, ...]) Load from an ASDF object.

load_file

ginga.util.io.io_asdf.load_file(filepath, idx=None, logger=None, **kwargs)
Load an object from an ASDF file. See ginga.util.loader() for more info.

load_asdf

ginga.util.io.io_asdf.load_asdf(asdf_obj, idx=None, logger=None)
Load data from an open ASDF object.

Parameters
asdf_obj [obj] ASDF or ASDF-in-FITS object.

idx [None] Currently unused. Reserved for future use to identify specific data set of an ASDF
object containing the data of interest.

logger [python logging object] Currently unused. Reserved for future use in logging

Returns
data [ndarray or None] Image data, if found.

wcs [obj or None] GWCS object or models, if found.

ahdr [dict] Header containing metadata.

8.11. ginga.util.io.io_asdf Module 275

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

load_from_asdf

ginga.util.io.io_asdf.load_from_asdf(asdf_obj, data_key='data', wcs_key='wcs', header_key='meta')
Load from an ASDF object. This method is primarily used internally to extract the correct parts of an ASDF file
to reconstruct an image with WCS and metadata.

Parameters
asdf_obj [obj] ASDF or ASDF-in-FITS object.

data_key, wcs_key, header_key [str] Key values to specify where to find data, WCS, and header
in ASDF.

Returns
data [ndarray or None] Image data, if found.

wcs [obj or None] GWCS object or models, if found.

ahdr [dict] Header containing metadata.

8.11.2 Classes

ASDFFileHandler(logger)

ASDFFileHandler

class ginga.util.io.io_asdf.ASDFFileHandler(logger)
Bases: ginga.util.io.io_base.BaseIOHandler

Attributes Summary

name

Methods Summary

close()

load_asdf (asdf_f[, idx])

load_asdf_hdu_in_fits(fits_f, hdu, **kwargs) * This is a special method that should only be
called from WITHIN io_fits.py to open up ASDF-
embedded-in-FITS *

load_file(filepath[, idx]) Load a single data object from a file.
load_idx(idx, **kwargs)

Parameters

continues on next page

276 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

Table 38 – continued from previous page
load_idx_cont(idx_spec, loader_cont_fn,
**kwargs) Parameters

open_file(filepath, **kwargs)

Attributes Documentation

name = 'asdf'

Methods Documentation

close()

load_asdf(asdf_f, idx=None, **kwargs)

load_asdf_hdu_in_fits(fits_f, hdu, **kwargs)
* This is a special method that should only be called from WITHIN io_fits.py to open up ASDF-
embedded-in-FITS *

load_file(filepath, idx=None, **kwargs)
Load a single data object from a file.

Parameters
idx [:py:Object] A Python value that matches describes the path or index to a single data data

object in the file

kwargs [optional keyword arguments] Any optional keyword arguments are passed to the
code that loads the data from the file

Returns
data_obj [subclass of ViewerObjectBase] A supported data wrapper object for a Ginga

viewer

load_idx(idx, **kwargs)

Parameters
idx [:py:class:object or None] A Python value that matches describes the path or index to

a single data data object in the file. Can be None to indicate opening the default (or first
usable) object. Acceptable formats are defined by the subclass.

kwargs [optional keyword arguments] Any optional keyword arguments are passed to the
code that loads the data from the file

Returns
data_obj [subclass of ViewerObjectBase] A supported data wrapper object for a Ginga

viewer

load_idx_cont(idx_spec, loader_cont_fn, **kwargs)

Parameters
idx_spec [str] A string in the form of a pair of brackets enclosing some index expression

matching data objects in the file

8.11. ginga.util.io.io_asdf Module 277

ginga Documentation, Release 3.3.0

loader_cont_fn [func (data_obj) -> None] A loader continuation function that takes a data
object generated from loading an HDU and does something with it

kwargs [optional keyword arguments] Any optional keyword arguments are passed to the
code that loads the data from the file

open_file(filepath, **kwargs)

8.11.3 Class Inheritance Diagram

ASDFFileHandlerBaseIOHandler

8.12 ginga.util.wcsmod Package

We are fortunate to have several possible choices for a python WCS package compatible with Ginga: astlib, kapteyn,
starlink and astropy. kapteyn and astropy wrap Mark Calabretta’s “WCSLIB”, astLib wraps Jessica Mink’s “wcstools”,
and I’m not sure what starlink uses (their own?).

Note that astlib requires pyfits (or astropy) in order to create a WCS object from a FITS header.

To force the use of one, do:

from ginga.util import wcsmod
wcsmod.use('kapteyn')

before you load any images. Otherwise Ginga will try to pick one for you.

Note that you can register custom WCS types using:

from ginga.util.wcsmod.common import register_wcs
register_wcs('mywcs', MyWCSClass, list_of_coord_types)

Look at the implemented WCS wrappers for details.

8.12.1 Functions

get_wcs_class(name) Get a WCS class corresponding to the registered name.

278 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

get_wcs_class

ginga.util.wcsmod.get_wcs_class(name)
Get a WCS class corresponding to the registered name. Will raise a KeyError if a class of the given name does
not exist.

8.13 ginga.util.wcs Module

This module handles calculations based on world coordinate system.

8.13.1 Functions

hmsToDeg(h, m, s) Convert RA hours, minutes, seconds into an angle in de-
grees.

dmsToDeg(sign, deg, min, sec) Convert dec sign, degrees, minutes, seconds into a
signed angle in degrees.

decTimeToDeg(sign_sym, deg, min, sec) Convert dec sign, degrees, minutes, seconds into a
signed angle in degrees.

degToHms(ra) Converts the ra (in degrees) to HMS three tuple.
degToDms(dec[, isLatitude]) Convert the dec, in degrees, to an (sign,D,M,S) tuple.
arcsecToDeg(arcsec) Convert numeric arcseconds (aka DMS seconds) to de-

grees of arc.
hmsStrToDeg(ra) Convert a string representation of RA into a float in de-

grees.
dmsStrToDeg(dec) Convert a string representation of DEC into a float in

degrees.
ra_deg_to_str(ra_deg[, precision, format])

dec_deg_to_str(dec_deg[, precision, format])

trans_coeff (eq, x, y, z) This function is provided by MOKA2 Development
Team (1996.xx.xx) and used in SOSS system.

eqToEq2000(ra_deg, dec_deg, eq) Convert Eq to Eq 2000.
get_xy_rotation_and_scale(header) CREDIT: See IDL code at http://www.astro.washington.

edu/docs/idl/cgi-bin/getpro/library32.html?GETROT
get_rotation_and_scale(header[,
skew_threshold])

Calculate rotation and CDELT.

get_relative_orientation(image, ref_image) Computes the relative orientation and scale of an image
to a reference image.

simple_wcs(px_x, px_y, ra_deg, dec_deg, ...) Calculate a set of WCS keywords for a 2D simple instru-
ment FITS file with a 'standard' RA/DEC pixel projec-
tion.

deg2fmt(ra_deg, dec_deg, format) Format coordinates.
dispos(dra0, decd0, dra, decd) Compute distance and position angle solving a spherical

triangle (no approximations).
deltaStarsRaDecDeg1(ra1_deg, dec1_deg, ...) Spherical triangulation.
deltaStarsRaDecDeg2(ra1_deg, dec1_deg, ...)

get_starsep_RaDecDeg(ra1_deg, dec1_deg, ...) Calculate separation.
continues on next page

8.13. ginga.util.wcs Module 279

http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT
http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT

ginga Documentation, Release 3.3.0

Table 40 – continued from previous page
add_offset_radec(ra_deg, dec_deg, ...) Algorithm to compute RA/Dec from RA/Dec base posi-

tion plus tangent plane offsets.
get_RaDecOffsets(ra1_deg, dec1_deg, ra2_deg, ...) Calculate offset.
lon_to_deg(lon) Convert longitude to degrees.
lat_to_deg(lat) Convert latitude to degrees.
raDegToString(ra_deg[, format])

decDegToString(dec_deg[, format])

hmsToDeg

ginga.util.wcs.hmsToDeg(h, m, s)
Convert RA hours, minutes, seconds into an angle in degrees.

dmsToDeg

ginga.util.wcs.dmsToDeg(sign, deg, min, sec)
Convert dec sign, degrees, minutes, seconds into a signed angle in degrees.

decTimeToDeg

ginga.util.wcs.decTimeToDeg(sign_sym, deg, min, sec)
Convert dec sign, degrees, minutes, seconds into a signed angle in degrees.

sign_sym may represent negative as either ‘-’ or numeric -1.

degToHms

ginga.util.wcs.degToHms(ra)
Converts the ra (in degrees) to HMS three tuple. H and M are in integer and the S part is in float.

degToDms

ginga.util.wcs.degToDms(dec, isLatitude=True)
Convert the dec, in degrees, to an (sign,D,M,S) tuple. D and M are integer, and sign and S are float.

arcsecToDeg

ginga.util.wcs.arcsecToDeg(arcsec)
Convert numeric arcseconds (aka DMS seconds) to degrees of arc.

280 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

hmsStrToDeg

ginga.util.wcs.hmsStrToDeg(ra)
Convert a string representation of RA into a float in degrees.

dmsStrToDeg

ginga.util.wcs.dmsStrToDeg(dec)
Convert a string representation of DEC into a float in degrees.

ra_deg_to_str

ginga.util.wcs.ra_deg_to_str(ra_deg, precision=3, format='%02d:%02d:%02d.%03d')

dec_deg_to_str

ginga.util.wcs.dec_deg_to_str(dec_deg, precision=2, format='%s%02d:%02d:%02d.%02d')

trans_coeff

ginga.util.wcs.trans_coeff(eq, x, y, z)
This function is provided by MOKA2 Development Team (1996.xx.xx) and used in SOSS system.

eqToEq2000

ginga.util.wcs.eqToEq2000(ra_deg, dec_deg, eq)
Convert Eq to Eq 2000.

get_xy_rotation_and_scale

ginga.util.wcs.get_xy_rotation_and_scale(header)
CREDIT: See IDL code at http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT

get_rotation_and_scale

ginga.util.wcs.get_rotation_and_scale(header, skew_threshold=0.001)
Calculate rotation and CDELT.

get_relative_orientation

ginga.util.wcs.get_relative_orientation(image, ref_image)
Computes the relative orientation and scale of an image to a reference image.

Parameters
image AstroImage based object

ref_image AstroImage based object

Returns

8.13. ginga.util.wcs Module 281

http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT

ginga Documentation, Release 3.3.0

result Bunch object containing the relative scale in x and y and the relative rotation in degrees.

simple_wcs

ginga.util.wcs.simple_wcs(px_x, px_y, ra_deg, dec_deg, px_scale_deg_px, rot_deg, cdbase=[1, 1])
Calculate a set of WCS keywords for a 2D simple instrument FITS file with a ‘standard’ RA/DEC pixel projection.

Parameters
px_x (ZERO-based) reference pixel of field in X (usually center of field)

px_y (ZERO-based) reference pixel of field in Y (usually center of field)

ra_deg RA (in deg) for the reference point

dec_deg DEC (in deg) for the reference point

px_scale_deg_px Pixel scale (deg/pixel); can be a tuple for different x,y scales

rot_deg Rotation angle of the field (in deg)

cdbase CD base

Returns
res [dict] Ordered dictionary object containing WCS headers.

deg2fmt

ginga.util.wcs.deg2fmt(ra_deg, dec_deg, format)
Format coordinates.

dispos

ginga.util.wcs.dispos(dra0, decd0, dra, decd)
Compute distance and position angle solving a spherical triangle (no approximations).

Source/credit: Skycat Author: A.P. Martinez

Parameters
dra0 [float] Center RA in decimal degrees.

decd0 [float] Center DEC in decimal degrees.

dra [float] Point RA in decimal degrees.

decd [float] Point DEC in decimal degrees.

Returns
phi [float] Phi in degrees (East of North).

dist [float] Distance in arcmin.

282 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

deltaStarsRaDecDeg1

ginga.util.wcs.deltaStarsRaDecDeg1(ra1_deg, dec1_deg, ra2_deg, dec2_deg)
Spherical triangulation.

deltaStarsRaDecDeg2

ginga.util.wcs.deltaStarsRaDecDeg2(ra1_deg, dec1_deg, ra2_deg, dec2_deg)

get_starsep_RaDecDeg

ginga.util.wcs.get_starsep_RaDecDeg(ra1_deg, dec1_deg, ra2_deg, dec2_deg)
Calculate separation.

add_offset_radec

ginga.util.wcs.add_offset_radec(ra_deg, dec_deg, delta_deg_ra, delta_deg_dec)
Algorithm to compute RA/Dec from RA/Dec base position plus tangent plane offsets.

get_RaDecOffsets

ginga.util.wcs.get_RaDecOffsets(ra1_deg, dec1_deg, ra2_deg, dec2_deg)
Calculate offset.

lon_to_deg

ginga.util.wcs.lon_to_deg(lon)
Convert longitude to degrees.

lat_to_deg

ginga.util.wcs.lat_to_deg(lat)
Convert latitude to degrees.

raDegToString

ginga.util.wcs.raDegToString(ra_deg, format=None)

decDegToString

ginga.util.wcs.decDegToString(dec_deg, format=None)

8.13. ginga.util.wcs Module 283

ginga Documentation, Release 3.3.0

8.14 ginga.util.ap_region Module

This module provides Ginga support for DS9 type region files and objects via the Astropy regions module.

8.14.1 Functions

astropy_region_to_ginga_canvas_object(r) Convert an Astropy region object to a Ginga canvas ob-
ject.

add_region(canvas, r[, tag, redraw]) Convenience function to plot an Astropy regions object
on a Ginga canvas.

ginga_canvas_object_to_astropy_region(obj) Convert a Ginga canvas object to an AstroPy region ob-
ject.

astropy_region_to_ginga_canvas_object

ginga.util.ap_region.astropy_region_to_ginga_canvas_object(r)
Convert an Astropy region object to a Ginga canvas object.

Parameters
r [subclass of PixelRegion] The region object to be converted

Returns
obj [subclass of CanvasObject] The corresponding Ginga canvas object

add_region

ginga.util.ap_region.add_region(canvas, r, tag=None, redraw=True)
Convenience function to plot an Astropy regions object on a Ginga canvas.

Parameters
canvas [DrawingCanvas] The Ginga canvas on which the region should be plotted.

r [subclass of PixelRegion] The region object to be plotted

tag [str or None (optional, default: None)] Caller can optionally pass a specific tag for the canvas
object

redraw [bool (optional, default: True)] True if the viewers of the canvas should be updated
immediately

ginga_canvas_object_to_astropy_region

ginga.util.ap_region.ginga_canvas_object_to_astropy_region(obj)
Convert a Ginga canvas object to an AstroPy region object.

Parameters
obj [subclass of CanvasObject] The Ginga canvas object to be converted

Returns
r [subclass of PixelRegion] The corresponding AstroPy region object

284 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

8.15 ginga.util.iqcalc Module

Module to handle image quality calculations.

8.15.1 Functions

get_mean(data_np) Calculate mean for valid values.
get_median(data_np) Like get_mean() but for median.

get_mean

ginga.util.iqcalc.get_mean(data_np)
Calculate mean for valid values.

Parameters
data_np [ndarray] Input array. Can contain masked values.

Returns
result [float] Mean of array values that are finite. If array contains no finite values, returns NaN.

get_median

ginga.util.iqcalc.get_median(data_np)
Like get_mean() but for median.

8.15.2 Classes

IQCalcError Base exception for raising errors in this module.
IQCalc([logger]) Class to handle model fitting and FWHM calculations.

IQCalcError

exception ginga.util.iqcalc.IQCalcError
Base exception for raising errors in this module.

IQCalc

class ginga.util.iqcalc.IQCalc(logger=None)
Bases: object

Class to handle model fitting and FWHM calculations.

Parameters
logger [obj or None] Python logger. If not given, one will be created.

Attributes

8.15. ginga.util.iqcalc Module 285

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

lock [threading.RLock] For mutex around scipy.optimize, which seems to be non-
threadsafe.

skylevel_magnification, skylevel_offset [float] For adjustments to sky background level.

Methods Summary

brightness(x, y, radius, medv, data) Return the brightness value found in a region defined
by input location and radius.

calc_fwhm(arr1d[, medv, method_name]) Calculate FWHM for the given input array.
calc_fwhm_gaussian(arr1d[, medv, gauss_fn]) FWHM calculation on a 1D array by using least

square fitting of a Gaussian function on the data.
calc_fwhm_moffat(arr1d[, medv, moffat_fn]) FWHM calculation on a 1D array by using least

square fitting of a Moffat function on the data.
centroid(data, xc, yc, radius) Calculate centroid from center of mass.
cut_cross(x, y, radius, data) Cut data vertically and horizontally at the given po-

sition with the given radius.
cut_region(x, y, radius, data) Return a cut region.
encircled_energy(data) Return a function of encircled energy across pixel in-

dices.
ensquared_energy(data) Return a function of ensquared energy across pixel

indices.
evaluate_peaks(peaks, data[, bright_radius, ...]) Evaluate photometry for given peaks in data array.
find_bright_peaks(data[, threshold, sigma, ...]) Find bright peak candidates in in the given data.
fwhm_data(x, y, data[, radius, method_name]) Equivalent to get_fwhm().
gaussian(x, p) Evaluate Gaussian function in 1D.
get_fwhm(x, y, radius, data[, medv, method_name]) Get the FWHM values of the object at the given co-

ordinates and radius.
get_threshold(data[, sigma]) Calculate threshold for find_bright_peaks().
moffat(x, p) Evaluate Moffat function in 1D.
objlist_select(objlist, width, height[, ...]) Filter output from evaluate_peaks().
pick_field(data[, peak_radius, ...]) Pick the first good object within the given field.
qualsize(image[, x1, y1, x2, y2, radius, ...]) Run pick_field() on the given image.
starsize(fwhm_x, deg_pix_x, fwhm_y,
deg_pix_y)

Calculate average FWHM in arcseconds.

Methods Documentation

brightness(x, y, radius, medv, data)
Return the brightness value found in a region defined by input location and radius. Region is cut using
cut_region().

Parameters
x, y [int] Indices of central pixel.

radius [int] Half-width in both X and Y directions.

medv [float] Background to subtract off.

data [array-like] Data array.

Returns
res [float] Brightness.

286 Chapter 8. Reference/API

https://docs.python.org/3/library/threading.html#threading.RLock
https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize

ginga Documentation, Release 3.3.0

calc_fwhm(arr1d, medv=None, method_name='gaussian')
Calculate FWHM for the given input array.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

method_name [{‘gaussian’, ‘moffat’}] Function to use for fitting.

Returns
res [Bunch] Fitting results.

calc_fwhm_gaussian(arr1d, medv=None, gauss_fn=None)
FWHM calculation on a 1D array by using least square fitting of a Gaussian function on the data.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

gauss_fn [func or None] Gaussian function for fitting. If not given, gaussian() is used.

Returns
res [Bunch] Fitting results.

Raises
IQCalcError Fitting failed.

calc_fwhm_moffat(arr1d, medv=None, moffat_fn=None)
FWHM calculation on a 1D array by using least square fitting of a Moffat function on the data.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

moffat_fn [func or None] Moffat function for fitting. If not given, moffat() is used.

Returns
res [Bunch] Fitting results.

Raises
IQCalcError Fitting failed.

centroid(data, xc, yc, radius)
Calculate centroid from center of mass.

Parameters
data [array-like] Data array.

xc, yc [int] X and Y indices of the approximate center.

radius [float] Half-width of the region to consider around the given center.

Returns
x, y [float] Centroid indices.

Raises

8.15. ginga.util.iqcalc Module 287

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

IQCalcError Missing dependency.

cut_cross(x, y, radius, data)
Cut data vertically and horizontally at the given position with the given radius.

Parameters
x, y [int] Indices where vertical and horizontal cuts meet.

radius [float] Radius of both cuts.

data [array-like] Data array to cut from.

Returns
x0 [array-like] Starting pixel of horizontal cut (in X).

y0 [array-like] Starting pixel of vertical cut (in Y).

xarr [array-like] Horizontal cut (in X).

yarr [array-like] Vertical cut (in Y).

cut_region(x, y, radius, data)
Return a cut region.

Parameters
x, y [int] Indices of central pixel.

radius [int] Half-width in both X and Y directions.

data [array-like] Data array to cut from.

Returns
x0, y0 [int] Origin of the region.

arr [array-like] Cut region (a view, not copy).

encircled_energy(data)
Return a function of encircled energy across pixel indices.

Ideally, data is already a masked array and is assumed to be centered.

ensquared_energy(data)
Return a function of ensquared energy across pixel indices.

Ideally, data is already a masked array and is assumed to be centered.

evaluate_peaks(peaks, data, bright_radius=2, fwhm_radius=15, fwhm_method='gaussian',
ee_total_radius=10, cb_fn=None, ev_intr=None)

Evaluate photometry for given peaks in data array.

Parameters
peaks [list of tuple] List of (x, y) tuples containing indices of peaks.

data [array-like] Data array that goes with the given peaks.

bright_radius [int] This is not used.
fwhm_radius, fwhm_method See get_fwhm().

ee_total_radius [float] Radius, in pixels, where encircled and ensquared energy fractions
are defined as 1.

cb_fn [func or None] If applicable, provide a callback function that takes a ginga.misc.
Bunch.Bunch containing the result for each peak. It should not return anything.

288 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

ev_intr [threading.Event or None] For threading, if applicable.

Returns
objlist [list of ginga.misc.Bunch.Bunch] A list of successful results for the given peaks.

Each result contains the following keys:

• objx, objy: Fitted centroid from get_fwhm().

• pos: A measure of distance from the center of the image.

• oid_x, oid_y: Center-of-mass centroid from centroid().

• fwhm_x, fwhm_y: Fitted FWHM from get_fwhm().

• fwhm: Overall measure of fwhm as a single value.

• fwhm_radius: Input FWHM radius.

• brightness: Average peak value based on get_fwhm() fits.

• elipse: A measure of ellipticity.

• x, y: Input indices of the peak.

• skylevel: Sky level estimated from median of data array and
skylevel_magnification and skylevel_offset attributes.

• background: Median of the input array.

• ensquared_energy_fn: Function of ensquared energy for different pixel radii.

• encircled_energy_fn: Function of encircled energy for different pixel radii.

find_bright_peaks(data, threshold=None, sigma=5, radius=5)
Find bright peak candidates in in the given data.

Parameters
data [array-like] Input data to find peaks from.

threshold [float or None] Detection threshold. Below this value, an object is not considered
a candidate. If not given, a default is calculated using get_threshold() with the given
sigma.

sigma [float] Sigma for the threshold.

radius [float] Pixel radius for determining local maxima. If the desired objects are larger in
size, specify a larger radius.

Returns
peaks [list of tuple] A list of candidate object coordinate tuples (x, y) in data.

fwhm_data(x, y, data, radius=15, method_name='gaussian')
Equivalent to get_fwhm().

gaussian(x, p)
Evaluate Gaussian function in 1D. See calc_fwhm().

Parameters
x [array-like] X values.

p [tuple of float] Parameters for Gaussian, i.e., (mean, stddev, amplitude).

Returns
y [array-like] Y values.

8.15. ginga.util.iqcalc Module 289

https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

get_fwhm(x, y, radius, data, medv=None, method_name='gaussian')
Get the FWHM values of the object at the given coordinates and radius.

Parameters
x, y [int] Indices of the object location in data array.

radius [float] Radius of the region encompassing the object.

data [array-like] Data array.

medv, method_name See calc_fwhm().

Returns
fwhm_x, fwhm_y [float] FWHM in X and Y, respectively.

ctr_x, ctr_y [float] Center in X and Y, respectively.

x_res, y_res [dict] Fit results from calc_fwhm() in X and Y, respectively.

get_threshold(data, sigma=5.0)
Calculate threshold for find_bright_peaks().

Parameters
data [array-like] Data array.

sigma [float] Sigma for the threshold.

Returns
threshold [float] Threshold based on good data, its median, and the given sigma.

moffat(x, p)
Evaluate Moffat function in 1D. See calc_fwhm().

Parameters
x [array-like] X values.

p [tuple of float] Parameters for Moffat, i.e., (x_0, gamma, alpha, amplitude), where
x_0 a.k.a. mean and gamma core width.

Returns
y [array-like] Y values.

objlist_select(objlist, width, height, minfwhm=2.0, maxfwhm=150.0, minelipse=0.5, edgew=0.01)
Filter output from evaluate_peaks().

Parameters
objlist [list of ginga.misc.Bunch.Bunch] Output from evaluate_peaks().

width, height [int] Dimension of data array from which objlist was derived.

minfwhm, maxfwhm [float] Limits for desired FWHM, where (minfwhm, maxfwhm).

minelipse [float] Minimum value of desired ellipticity (not inclusive).

edgew [float] Factor between 0 and 1 that determines if a location is too close to the edge or
not.

Returns
results [list of ginga.misc.Bunch.Bunch] Elements of objlist that contain desired

FWHM, ellipticity, and not too close to the edge.

290 Chapter 8. Reference/API

ginga Documentation, Release 3.3.0

pick_field(data, peak_radius=5, bright_radius=2, fwhm_radius=15, threshold=None, minfwhm=2.0,
maxfwhm=50.0, minelipse=0.5, edgew=0.01, ee_total_radius=10)

Pick the first good object within the given field.

Parameters
data [array-like] Data array of the field.

peak_radius, threshold See find_bright_peaks().

bright_radius, fwhm_radius, ee_total_radius See evaluate_peaks().

minfwhm, maxfwhm, minelipse, edgew See objlist_select().

Returns
result [ginga.misc.Bunch.Bunch] This is a single element of objlist as described in
evaluate_peaks().

Raises
IQCalcError No object matches selection criteria.

qualsize(image, x1=None, y1=None, x2=None, y2=None, radius=5, bright_radius=2, fwhm_radius=15,
threshold=None, minfwhm=2.0, maxfwhm=50.0, minelipse=0.5, edgew=0.01,
ee_total_radius=10)

Run pick_field() on the given image.

Parameters
image [ginga.AstroImage.AstroImage] Image to process.

x1, y1, x2, y2 [int] See ginga.BaseImage.BaseImage.cutout_data().

radius, threshold See find_bright_peaks().

bright_radius, fwhm_radius, ee_total_radius See evaluate_peaks().

minfwhm, maxfwhm, minelipse, edgew See objlist_select().

Returns
qs [ginga.misc.Bunch.Bunch] This is a single element of objlist as described in
evaluate_peaks().

starsize(fwhm_x, deg_pix_x, fwhm_y, deg_pix_y)
Calculate average FWHM in arcseconds.

Parameters
fwhm_x [float] FWHM in X (pixels).

deg_pix_x [float] Plate scale from CDELT1 in degrees per pixel.

fwhm_y [float] FWHM in Y (pixels).

deg_pix_y [float] Plate scale from CDELT2 in degrees per pixel.

Returns
fwhm [float] Average FWHM in arcseconds.

8.15. ginga.util.iqcalc Module 291

ginga Documentation, Release 3.3.0

8.16 ginga.util.iqcalc_astropy Module

Module to handle image quality calculations using astropy.

8.16.1 Classes

IQCalc(*args, **kwargs) This is ginga.util.iqcalc.IQCalc that uses
astropy.

IQCalc

class ginga.util.iqcalc_astropy.IQCalc(*args, **kwargs)
Bases: ginga.util.iqcalc.IQCalc

This is ginga.util.iqcalc.IQCalc that uses astropy.

This subclass has an extra self.fitter attribute for astropy fitting.

Methods Summary

calc_fwhm(arr1d[, medv, method_name]) Calculate FWHM for the given input array.
calc_fwhm_gaussian(arr1d[, medv]) FWHM calculation on a 1D array by using least

square fitting of a Gaussian function on the data.
calc_fwhm_lorentz(arr1d[, medv]) FWHM calculation on a 1D array by using least

square fitting of a Lorentz function on the data.
calc_fwhm_moffat(arr1d[, medv]) FWHM calculation on a 1D array by using least

square fitting of a Moffat function on the data.
centroid(data, xc, yc, radius) Calculate centroid from center of mass.
find_bright_peaks(data[, threshold, sigma, ...]) Find bright peak candidates in in the given data.
gaussian(x, p) Evaluate Gaussian function in 1D.
lorentz(x, p) Evaluate Lorentz function in 1D.
moffat(x, p) Evaluate Moffat function in 1D.

Methods Documentation

calc_fwhm(arr1d, medv=None, method_name='gaussian')
Calculate FWHM for the given input array.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

method_name [{‘gaussian’, ‘moffat’, ‘lorentz’}] Function to use for fitting.

Returns
res [Bunch] Fitting results.

Raises
NotImplementedError Given function is not supported.

292 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

calc_fwhm_gaussian(arr1d, medv=None, **kwargs)
FWHM calculation on a 1D array by using least square fitting of a Gaussian function on the data.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

kwargs [dict] Not used; for backward-compatible API call only.

Returns
res [Bunch] Fitting results.

Raises
IQCalcError Fitting failed.

calc_fwhm_lorentz(arr1d, medv=None, **kwargs)
FWHM calculation on a 1D array by using least square fitting of a Lorentz function on the data.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

kwargs [dict] Not used; for backward-compatible API call only.

Returns
res [Bunch] Fitting results.

Raises
IQCalcError Fitting failed.

calc_fwhm_moffat(arr1d, medv=None, **kwargs)
FWHM calculation on a 1D array by using least square fitting of a Moffat function on the data.

Parameters
arr1d [array-like] 1D array cut in either X or Y direction on the object.

medv [float or None] Median of the data. If not given, it is calculated from arr1d.

kwargs [dict] Not used; for backward-compatible API call only.

Returns
res [Bunch] Fitting results.

Raises
IQCalcError Fitting failed.

centroid(data, xc, yc, radius)
Calculate centroid from center of mass.

Parameters
data [array-like] Data array.

xc, yc [int] X and Y indices of the approximate center.

radius [float] Half-width of the region to consider around the given center.

Returns

8.16. ginga.util.iqcalc_astropy Module 293

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ginga Documentation, Release 3.3.0

x, y [float] Centroid indices.

Raises
IQCalcError Missing dependency.

find_bright_peaks(data, threshold=None, sigma=5, radius=5)
Find bright peak candidates in in the given data.

Parameters
data [array-like] Input data to find peaks from.

threshold [float or None] Detection threshold. Below this value, an object is not considered
a candidate. If not given, a default is calculated using get_threshold() with the given
sigma.

sigma [float] Sigma for the threshold.

radius [float] Pixel radius for determining local maxima. If the desired objects are larger in
size, specify a larger radius.

Returns
peaks [list of tuple] A list of candidate object coordinate tuples (x, y) in data.

gaussian(x, p)
Evaluate Gaussian function in 1D.

Parameters
x [array-like] X values.

p [tuple of float] Parameters for Gaussian, i.e., (mean, stddev, amplitude).

Returns
y [array-like] Y values.

lorentz(x, p)
Evaluate Lorentz function in 1D.

Parameters
x [array-like] X values.

p [tuple of float] Parameters for Lorentz, i.e., (x_0, fwhm, amplitude).

Returns
y [array-like] Y values.

moffat(x, p)
Evaluate Moffat function in 1D.

Parameters
x [array-like] X values.

p [tuple of float] Parameters for Moffat, i.e., (x_0, gamma, alpha, amplitude), where
x_0 a.k.a. mean and gamma core width.

Returns
y [array-like] Y values.

Some training videos are available in the downloads page on Github.

Be sure to also check out the Ginga wiki.

294 Chapter 8. Reference/API

https://docs.python.org/3/library/constants.html#None
https://github.com/ejeschke/ginga/downloads
https://github.com/ejeschke/ginga/wiki

Part VII

Bug Reports

295

ginga Documentation, Release 3.3.0

Please file an issue with the issue tracker on Github.

Ginga has a logging facility, and it would be most helpful if you can invoke Ginga with the logging options to capture
any logged errors:

ginga --loglevel=20 --log=ginga.log

If the difficulty is with non-display or non-working World Coordinate System (WCS) for a particular image file please
be ready to supply the file for our aid in debugging.

297

https://github.com/ejeschke/ginga/issues
http://www.atnf.csiro.au/people/mcalabre/WCS/

ginga Documentation, Release 3.3.0

298

Part VIII

Developer Info

299

ginga Documentation, Release 3.3.0

In the source code examples/* directories, see example{1,2}_gtk.py (Gtk), example{1,2}_qt.py (Qt),
example{1,2}_tk.py (Tk), or example{1,2,3,4,5}_mpl.py (Matplotlib). There is more information for devel-
opers in the Developer’s Manual.

See also the Reference/API or Module Index for a list of the available modules.

301

https://www.gtk.org/
https://en.wikipedia.org/wiki/Qt_(software)
http://wiki.tcl.tk/487
https://matplotlib.org/
py-modindex.html

ginga Documentation, Release 3.3.0

302

Part IX

Etymology

303

ginga Documentation, Release 3.3.0

“Ginga” is the romanized spelling of the Japanese word “NN” (Hiragana: NNN), meaning “galaxy” (in general) and,
more familiarly, the Milky Way. This viewer was written by software engineers at Subaru Telescope, National Astro-
nomical Observatory of Japan, thus the connection.

305

http://subarutelescope.org/

ginga Documentation, Release 3.3.0

306

Part X

Pronunciation

307

ginga Documentation, Release 3.3.0

Ginga the viewer may be pronounced “ging-ga” (proper Japanese) or “jing-ga” (perhaps easier for Westerners). The
latter pronunciation has meaning in the Brazilian dance/martial art Capoeira: a fundamental rocking or back and forth
swinging motion. Pronunciation as “jin-ja” is considered poor form.

309

https://en.wikipedia.org/wiki/Capoeira

ginga Documentation, Release 3.3.0

310

PYTHON MODULE INDEX

a
ginga.AutoCuts, 267

c
ginga.canvas.CanvasMixin, 217
ginga.canvas.CanvasObject, 219
ginga.canvas.CompoundMixin, 225
ginga.canvas.coordmap, 228
ginga.canvas.DrawingMixin, 233
ginga.canvas.types.layer, 237
ginga.colors, 266

i
ginga.ImageView, 238

r
ginga.rv.main, 263
ginga.rv.plugins.Blink, 126
ginga.rv.plugins.Catalogs, 138
ginga.rv.plugins.ChangeHistory, 91
ginga.rv.plugins.Collage, 144
ginga.rv.plugins.Colorbar, 80
ginga.rv.plugins.ColorMapPicker, 84
ginga.rv.plugins.Command, 95
ginga.rv.plugins.Compose, 147
ginga.rv.plugins.Contents, 78
ginga.rv.plugins.Crosshair, 117
ginga.rv.plugins.Cursor, 80
ginga.rv.plugins.Cuts, 113
ginga.rv.plugins.Downloads, 98
ginga.rv.plugins.Drawing, 145
ginga.rv.plugins.Errors, 85
ginga.rv.plugins.FBrowser, 146
ginga.rv.plugins.Header, 71
ginga.rv.plugins.Histogram, 115
ginga.rv.plugins.Info, 70
ginga.rv.plugins.LineProfile, 127
ginga.rv.plugins.Log, 94
ginga.rv.plugins.Mosaic, 142
ginga.rv.plugins.MultiDim, 112
ginga.rv.plugins.Operations, 81
ginga.rv.plugins.Overlays, 120

ginga.rv.plugins.Pan, 68
ginga.rv.plugins.Pick, 99
ginga.rv.plugins.Pipeline, 150
ginga.rv.plugins.PixTable, 129
ginga.rv.plugins.PlotTable, 149
ginga.rv.plugins.Preferences, 131
ginga.rv.plugins.RC, 85
ginga.rv.plugins.Ruler, 110
ginga.rv.plugins.SAMP, 92
ginga.rv.plugins.SaveImage, 96
ginga.rv.plugins.ScreenShot, 151
ginga.rv.plugins.Thumbs, 75
ginga.rv.plugins.Toolbar, 68
ginga.rv.plugins.TVMark, 122
ginga.rv.plugins.TVMask, 124
ginga.rv.plugins.WBrowser, 82
ginga.rv.plugins.WCSAxes, 121
ginga.rv.plugins.WCSMatch, 89
ginga.rv.plugins.Zoom, 73

u
ginga.util.ap_region, 284
ginga.util.io.io_asdf, 275
ginga.util.iqcalc, 285
ginga.util.iqcalc_astropy, 292
ginga.util.wcs, 279
ginga.util.wcsmod, 278

311

ginga Documentation, Release 3.3.0

312 Python Module Index

INDEX

A
add() (ginga.canvas.CanvasMixin.CanvasMixin

method), 218
add_color() (in module ginga.colors), 267
add_default_options()

(ginga.rv.main.ReferenceViewer method),
265

add_default_plugins()
(ginga.rv.main.ReferenceViewer method),
265

add_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin
method), 235

add_global_plugin() (ginga.rv.main.ReferenceViewer
method), 265

add_global_plugin_spec()
(ginga.rv.main.ReferenceViewer method),
265

add_local_plugin() (ginga.rv.main.ReferenceViewer
method), 265

add_local_plugin_spec()
(ginga.rv.main.ReferenceViewer method),
265

add_object() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

add_offset_radec() (in module ginga.util.wcs), 283
add_plugin_spec() (ginga.rv.main.ReferenceViewer

method), 265
add_region() (in module ginga.util.ap_region), 284
add_separately_distributed_plugins()

(ginga.rv.main.ReferenceViewer method),
265

addObject() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

apply_profile() (ginga.ImageView.ImageViewBase
method), 244

apply_profile_or_settings()
(ginga.ImageView.ImageViewBase method),
244

arcsecToDeg() (in module ginga.util.wcs), 280
ASDFFileHandler (class in ginga.util.io.io_asdf), 276
astropy_region_to_ginga_canvas_object() (in

module ginga.util.ap_region), 284

auto_levels() (ginga.ImageView.ImageViewBase
method), 244

auto_orient() (ginga.ImageView.ImageViewBase
method), 245

autocut_params_cb()
(ginga.ImageView.ImageViewBase method),
245

AutoCutsBase (class in ginga.AutoCuts), 268

B
brightness() (ginga.util.iqcalc.IQCalc method), 286

C
calc_cut_levels() (ginga.AutoCuts.AutoCutsBase

method), 269
calc_cut_levels() (ginga.AutoCuts.Histogram

method), 272
calc_cut_levels() (ginga.AutoCuts.MedianFilter

method), 274
calc_cut_levels() (ginga.AutoCuts.Minmax method),

271
calc_cut_levels() (ginga.AutoCuts.StdDev method),

273
calc_cut_levels() (ginga.AutoCuts.ZScale method),

275
calc_cut_levels_data()

(ginga.AutoCuts.AutoCutsBase method),
269

calc_cut_levels_data() (ginga.AutoCuts.Histogram
method), 272

calc_cut_levels_data()
(ginga.AutoCuts.MedianFilter method), 274

calc_cut_levels_data() (ginga.AutoCuts.Minmax
method), 271

calc_cut_levels_data() (ginga.AutoCuts.StdDev
method), 273

calc_cut_levels_data() (ginga.AutoCuts.ZScale
method), 275

calc_dual_scale_from_pt()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

calc_fwhm() (ginga.util.iqcalc.IQCalc method), 286

313

ginga Documentation, Release 3.3.0

calc_fwhm() (ginga.util.iqcalc_astropy.IQCalc
method), 292

calc_fwhm_gaussian() (ginga.util.iqcalc.IQCalc
method), 287

calc_fwhm_gaussian()
(ginga.util.iqcalc_astropy.IQCalc method),
292

calc_fwhm_lorentz()
(ginga.util.iqcalc_astropy.IQCalc method),
293

calc_fwhm_moffat() (ginga.util.iqcalc.IQCalc
method), 287

calc_fwhm_moffat() (ginga.util.iqcalc_astropy.IQCalc
method), 293

calc_histogram() (ginga.AutoCuts.Histogram
method), 272

calc_medianfilter() (ginga.AutoCuts.MedianFilter
method), 274

calc_offsets() (ginga.canvas.coordmap.OffsetMapper
method), 232

calc_radius() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

calc_rotation_from_pt()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

calc_scale_from_pt()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

calc_stddev() (ginga.AutoCuts.StdDev method), 273
calc_vertexes() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 222
calc_zscale() (ginga.AutoCuts.ZScale method), 275
Canvas (class in ginga.canvas.types.layer), 237
canvas_changed_cb()

(ginga.ImageView.ImageViewBase method),
245

canvascoords() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

canvascoords() (ginga.ImageView.ImageViewBase
method), 245

CanvasMixin (class in ginga.canvas.CanvasMixin), 217
CanvasObjectBase (class in

ginga.canvas.CanvasObject), 220
capture_profile() (ginga.ImageView.ImageViewBase

method), 245
CartesianMapper (class in ginga.canvas.coordmap),

230
center_cursor() (ginga.ImageView.ImageViewBase

method), 245
center_image() (ginga.ImageView.ImageViewBase

method), 245
centroid() (ginga.util.iqcalc.IQCalc method), 287
centroid() (ginga.util.iqcalc_astropy.IQCalc method),

293

check_cursor_location()
(ginga.ImageView.ImageViewBase method),
245

checkpoint_profile()
(ginga.ImageView.ImageViewBase method),
245

clear() (ginga.ImageView.ImageViewBase method), 245
clear_default_plugins()

(ginga.rv.main.ReferenceViewer method),
265

clear_selected() (ginga.canvas.DrawingMixin.DrawingMixin
method), 235

close() (ginga.util.io.io_asdf.ASDFFileHandler
method), 277

CompoundMixin (class in
ginga.canvas.CompoundMixin), 225

CompoundObject (class in ginga.canvas.types.layer),
237

configure() (ginga.ImageView.ImageViewBase
method), 245

configure_surface()
(ginga.ImageView.ImageViewBase method),
245

contains() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

contains_arr() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

contains_pt() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

contains_pts() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 222

contains_pts() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

convert_mapper() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

copy() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

copy() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

copy_attributes() (ginga.ImageView.ImageViewBase
method), 245

copy_to_dst() (ginga.ImageView.ImageViewBase
method), 245

cut_cross() (ginga.util.iqcalc.IQCalc method), 288
cut_levels() (ginga.AutoCuts.AutoCutsBase method),

269
cut_levels() (ginga.ImageView.ImageViewBase

method), 245
cut_levels_cb() (ginga.ImageView.ImageViewBase

method), 246
cut_region() (ginga.util.iqcalc.IQCalc method), 288

D
data_to() (ginga.canvas.coordmap.CartesianMapper

314 Index

ginga Documentation, Release 3.3.0

method), 231
data_to() (ginga.canvas.coordmap.DataMapper

method), 231
data_to() (ginga.canvas.coordmap.NativeMapper

method), 229
data_to() (ginga.canvas.coordmap.OffsetMapper

method), 232
data_to() (ginga.canvas.coordmap.PercentageMapper

method), 230
data_to() (ginga.canvas.coordmap.WCSMapper

method), 233
data_to() (ginga.canvas.coordmap.WindowMapper

method), 229
data_to_offset() (ginga.ImageView.ImageViewBase

method), 246
DataMapper (class in ginga.canvas.coordmap), 231
dec_deg_to_str() (in module ginga.util.wcs), 281
decDegToString() (in module ginga.util.wcs), 283
decTimeToDeg() (in module ginga.util.wcs), 280
define_cursor() (ginga.ImageView.ImageViewBase

method), 246
deg2fmt() (in module ginga.util.wcs), 282
degToDms() (in module ginga.util.wcs), 280
degToHms() (in module ginga.util.wcs), 280
delayed_redraw() (ginga.ImageView.ImageViewBase

method), 246
delete_all_objects()

(ginga.canvas.CanvasMixin.CanvasMixin
method), 218

delete_all_objects()
(ginga.canvas.CompoundMixin.CompoundMixin
method), 227

delete_object() (ginga.canvas.CanvasMixin.CanvasMixin
method), 218

delete_object() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

delete_object_by_tag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 218

delete_objects() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

delete_objects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

delete_objects_by_tag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

deleteAllObjects() (ginga.canvas.CanvasMixin.CanvasMixin
method), 218

deleteAllObjects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

deleteObject() (ginga.canvas.CanvasMixin.CanvasMixin
method), 218

deleteObject() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

deleteObjectByTag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 218

deleteObjects() (ginga.canvas.CanvasMixin.CanvasMixin
method), 218

deleteObjects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

deleteObjectsByTag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 218

deltaStarsRaDecDeg1() (in module ginga.util.wcs),
283

deltaStarsRaDecDeg2() (in module ginga.util.wcs),
283

dispos() (in module ginga.util.wcs), 282
dmsStrToDeg() (in module ginga.util.wcs), 281
dmsToDeg() (in module ginga.util.wcs), 280
draw() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
draw() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
draw_arrowhead() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
draw_caps() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
draw_edit() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
draw_motion() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
draw_poly_add() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
draw_poly_delete() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
draw_start() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
draw_stop() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
DrawingCanvas (class in ginga.canvas.types.layer), 238
DrawingMixin (class in ginga.canvas.DrawingMixin),

233

E
edit_delete() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
edit_delete_cb() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
edit_motion() (ginga.canvas.DrawingMixin.DrawingMixin

method), 235
edit_poly_add() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
edit_poly_delete() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
edit_rotate() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236

Index 315

ginga Documentation, Release 3.3.0

edit_scale() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

edit_select() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

edit_start() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

edit_stop() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

enable_auto_orient()
(ginga.ImageView.ImageViewBase method),
246

enable_autocenter()
(ginga.ImageView.ImageViewBase method),
246

enable_autocuts() (ginga.ImageView.ImageViewBase
method), 246

enable_autozoom() (ginga.ImageView.ImageViewBase
method), 246

enable_draw() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

enable_edit() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

encircled_energy() (ginga.util.iqcalc.IQCalc
method), 288

ensquared_energy() (ginga.util.iqcalc.IQCalc
method), 288

eqToEq2000() (in module ginga.util.wcs), 281
evaluate_peaks() (ginga.util.iqcalc.IQCalc method),

288

F
find_bright_peaks() (ginga.util.iqcalc.IQCalc

method), 289
find_bright_peaks()

(ginga.util.iqcalc_astropy.IQCalc method),
294

fwhm_data() (ginga.util.iqcalc.IQCalc method), 289

G
gaussian() (ginga.util.iqcalc.IQCalc method), 289
gaussian() (ginga.util.iqcalc_astropy.IQCalc method),

294
get_algorithms() (ginga.AutoCuts.AutoCutsBase

method), 269
get_autocenter_options()

(ginga.ImageView.ImageViewBase method),
247

get_autocut_levels()
(ginga.AutoCuts.AutoCutsBase method),
269

get_autocut_methods()
(ginga.ImageView.ImageViewBase method),
247

get_autocuts() (in module ginga.AutoCuts), 267

get_autocuts_names() (in module ginga.AutoCuts),
268

get_autocuts_options()
(ginga.ImageView.ImageViewBase method),
247

get_autozoom_options()
(ginga.ImageView.ImageViewBase method),
247

get_bbox() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_bg() (ginga.ImageView.ImageViewBase method),
247

get_canvas() (ginga.ImageView.ImageViewBase
method), 247

get_canvas_image() (ginga.ImageView.ImageViewBase
method), 247

get_canvas_pt() (ginga.ImageView.ImageViewBase
method), 247

get_canvas_type() (in module
ginga.canvas.CanvasObject), 220

get_canvas_types() (in module
ginga.canvas.CanvasObject), 220

get_canvas_xy() (ginga.ImageView.ImageViewBase
method), 247

get_center() (ginga.ImageView.ImageViewBase
method), 247

get_center_pt() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_center_pt() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_color_algorithms()
(ginga.ImageView.ImageViewBase method),
247

get_colors() (in module ginga.colors), 267
get_coordmap() (ginga.ImageView.ImageViewBase

method), 247
get_cpoints() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
get_crop() (ginga.AutoCuts.AutoCutsBase method),

269
get_crop_data() (ginga.AutoCuts.AutoCutsBase

method), 270
get_cursor() (ginga.ImageView.ImageViewBase

method), 248
get_cut_levels() (ginga.ImageView.ImageViewBase

method), 248
get_data() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
get_data() (ginga.ImageView.ImageViewBase method),

248
get_data_pct() (ginga.ImageView.ImageViewBase

method), 248
get_data_points() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223

316 Index

ginga Documentation, Release 3.3.0

get_data_pt() (ginga.ImageView.ImageViewBase
method), 248

get_data_size() (ginga.ImageView.ImageViewBase
method), 248

get_data_xy() (ginga.ImageView.ImageViewBase
method), 248

get_dataobj() (ginga.ImageView.ImageViewBase
method), 248

get_datarect() (ginga.ImageView.ImageViewBase
method), 249

get_desired_size() (ginga.ImageView.ImageViewBase
method), 249

get_dims() (ginga.ImageView.ImageViewBase method),
249

get_draw_class() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_draw_classes() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_draw_rect() (ginga.ImageView.ImageViewBase
method), 249

get_drawparams() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_drawtype() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_drawtypes() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_edit_object() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

get_edit_points() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_fg() (ginga.ImageView.ImageViewBase method),
249

get_full() (ginga.AutoCuts.AutoCutsBase method),
270

get_fwhm() (ginga.util.iqcalc.IQCalc method), 289
get_image() (ginga.ImageView.ImageViewBase

method), 249
get_image_as_array()

(ginga.ImageView.ImageViewBase method),
249

get_image_as_buffer()
(ginga.ImageView.ImageViewBase method),
249

get_items_at() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_last_data_xy() (ginga.ImageView.ImageViewBase
method), 250

get_last_win_xy() (ginga.ImageView.ImageViewBase
method), 250

get_limits() (ginga.ImageView.ImageViewBase
method), 250

get_llur() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
get_llur() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
get_logger() (ginga.ImageView.ImageViewBase

method), 250
get_mean() (in module ginga.util.iqcalc), 285
get_median() (in module ginga.util.iqcalc), 285
get_move_scale_rotate_pts()

(ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_num_points() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_object_by_tag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

get_objects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_objects_by_kind()
(ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_objects_by_kinds()
(ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_objects_by_tag_pfx()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

get_pan() (ginga.ImageView.ImageViewBase method),
250

get_pan_rect() (ginga.ImageView.ImageViewBase
method), 250

get_params_metadata()
(ginga.AutoCuts.AutoCutsBase class method),
270

get_params_metadata() (ginga.AutoCuts.Histogram
class method), 272

get_params_metadata()
(ginga.AutoCuts.MedianFilter class method),
274

get_params_metadata() (ginga.AutoCuts.StdDev
class method), 273

get_params_metadata() (ginga.AutoCuts.ZScale class
method), 275

get_params_metadata()
(ginga.canvas.types.layer.Canvas class
method), 238

get_params_metadata()
(ginga.canvas.types.layer.CompoundObject
class method), 237

get_pixel_distance()
(ginga.ImageView.ImageViewBase method),
250

get_plain_image_as_widget()
(ginga.ImageView.ImageViewBase method),
250

Index 317

ginga Documentation, Release 3.3.0

get_point_by_index()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_points() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_points() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

get_private_canvas()
(ginga.ImageView.ImageViewBase method),
251

get_pt() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 223

get_RaDecOffsets() (in module ginga.util.wcs), 283
get_reference_pt() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
get_reference_pt() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
get_refresh_stats()

(ginga.ImageView.ImageViewBase method),
251

get_relative_orientation() (in module
ginga.util.wcs), 281

get_rgb_image_as_buffer()
(ginga.ImageView.ImageViewBase method),
251

get_rgb_image_as_bytes()
(ginga.ImageView.ImageViewBase method),
251

get_rgb_image_as_widget()
(ginga.ImageView.ImageViewBase method),
251

get_rgb_order() (ginga.ImageView.ImageViewBase
method), 251

get_rgbmap() (ginga.ImageView.ImageViewBase
method), 252

get_rotation() (ginga.ImageView.ImageViewBase
method), 252

get_rotation_and_scale() (in module
ginga.util.wcs), 281

get_rotation_info()
(ginga.ImageView.ImageViewBase method),
252

get_sample() (ginga.AutoCuts.AutoCutsBase method),
270

get_sample_data() (ginga.AutoCuts.AutoCutsBase
method), 270

get_scale() (ginga.ImageView.ImageViewBase
method), 252

get_scale_base_xy()
(ginga.ImageView.ImageViewBase method),
252

get_scale_limits() (ginga.ImageView.ImageViewBase
method), 252

get_scale_max() (ginga.ImageView.ImageViewBase

method), 252
get_scale_min() (ginga.ImageView.ImageViewBase

method), 252
get_scale_text() (ginga.ImageView.ImageViewBase

method), 252
get_scale_xy() (ginga.ImageView.ImageViewBase

method), 252
get_selected() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
get_settings() (ginga.ImageView.ImageViewBase

method), 252
get_starsep_RaDecDeg() (in module ginga.util.wcs),

283
get_tags() (ginga.canvas.CanvasMixin.CanvasMixin

method), 219
get_tags_by_tag_pfx()

(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

get_threshold() (ginga.util.iqcalc.IQCalc method),
290

get_transforms() (ginga.ImageView.ImageViewBase
method), 253

get_vip() (ginga.ImageView.ImageViewBase method),
253

get_wcs_class() (in module ginga.util.wcsmod), 279
get_window_size() (ginga.ImageView.ImageViewBase

method), 253
get_xy_rotation_and_scale() (in module

ginga.util.wcs), 281
get_zoom() (ginga.ImageView.ImageViewBase method),

253
get_zoom_algorithm()

(ginga.ImageView.ImageViewBase method),
253

get_zoomrate() (ginga.ImageView.ImageViewBase
method), 253

getDrawClass() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

getItemsAt() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

getObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

getObjects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

getObjectsByTagpfx()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

getTagsByTagpfx() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

getwin_array() (ginga.ImageView.ImageViewBase
method), 253

getwin_buffer() (ginga.ImageView.ImageViewBase
method), 253

ginga.AutoCuts

318 Index

ginga Documentation, Release 3.3.0

module, 267
ginga.canvas.CanvasMixin
module, 217

ginga.canvas.CanvasObject
module, 219

ginga.canvas.CompoundMixin
module, 225

ginga.canvas.coordmap
module, 228

ginga.canvas.DrawingMixin
module, 233

ginga.canvas.types.layer
module, 237

ginga.colors
module, 266

ginga.ImageView
module, 238

ginga.rv.main
module, 263

ginga.rv.plugins.Blink
module, 126

ginga.rv.plugins.Catalogs
module, 138

ginga.rv.plugins.ChangeHistory
module, 91

ginga.rv.plugins.Collage
module, 144

ginga.rv.plugins.Colorbar
module, 80

ginga.rv.plugins.ColorMapPicker
module, 84

ginga.rv.plugins.Command
module, 95

ginga.rv.plugins.Compose
module, 147

ginga.rv.plugins.Contents
module, 78

ginga.rv.plugins.Crosshair
module, 117

ginga.rv.plugins.Cursor
module, 80

ginga.rv.plugins.Cuts
module, 113

ginga.rv.plugins.Downloads
module, 98

ginga.rv.plugins.Drawing
module, 145

ginga.rv.plugins.Errors
module, 85

ginga.rv.plugins.FBrowser
module, 146

ginga.rv.plugins.Header
module, 71

ginga.rv.plugins.Histogram

module, 115
ginga.rv.plugins.Info
module, 70

ginga.rv.plugins.LineProfile
module, 127

ginga.rv.plugins.Log
module, 94

ginga.rv.plugins.Mosaic
module, 142

ginga.rv.plugins.MultiDim
module, 112

ginga.rv.plugins.Operations
module, 81

ginga.rv.plugins.Overlays
module, 120

ginga.rv.plugins.Pan
module, 68

ginga.rv.plugins.Pick
module, 99

ginga.rv.plugins.Pipeline
module, 150

ginga.rv.plugins.PixTable
module, 129

ginga.rv.plugins.PlotTable
module, 149

ginga.rv.plugins.Preferences
module, 131

ginga.rv.plugins.RC
module, 85

ginga.rv.plugins.Ruler
module, 110

ginga.rv.plugins.SAMP
module, 92

ginga.rv.plugins.SaveImage
module, 96

ginga.rv.plugins.ScreenShot
module, 151

ginga.rv.plugins.Thumbs
module, 75

ginga.rv.plugins.Toolbar
module, 68

ginga.rv.plugins.TVMark
module, 122

ginga.rv.plugins.TVMask
module, 124

ginga.rv.plugins.WBrowser
module, 82

ginga.rv.plugins.WCSAxes
module, 121

ginga.rv.plugins.WCSMatch
module, 89

ginga.rv.plugins.Zoom
module, 73

ginga.util.ap_region

Index 319

ginga Documentation, Release 3.3.0

module, 284
ginga.util.io.io_asdf
module, 275

ginga.util.iqcalc
module, 285

ginga.util.iqcalc_astropy
module, 292

ginga.util.wcs
module, 279

ginga.util.wcsmod
module, 278

ginga_canvas_object_to_astropy_region() (in
module ginga.util.ap_region), 284

H
has_object() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
has_tag() (ginga.canvas.CanvasMixin.CanvasMixin

method), 219
Histogram (class in ginga.AutoCuts), 271
hmsStrToDeg() (in module ginga.util.wcs), 281
hmsToDeg() (in module ginga.util.wcs), 280

I
icc_profile_cb() (ginga.ImageView.ImageViewBase

method), 253
ImageViewBase (class in ginga.ImageView), 239
inherit_from() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
initialize() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
initialize() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
initialize_private_canvas()

(ginga.ImageView.ImageViewBase method),
253

interpolation_change_cb()
(ginga.ImageView.ImageViewBase method),
253

invert_cmap() (ginga.ImageView.ImageViewBase
method), 253

IQCalc (class in ginga.util.iqcalc), 285
IQCalc (class in ginga.util.iqcalc_astropy), 292
IQCalcError, 285
is_compound() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
is_compound() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
is_compound() (ginga.ImageView.ImageViewBase

method), 253
is_drawing() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
is_editing() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236

is_redraw_pending()
(ginga.ImageView.ImageViewBase method),
254

is_selected() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

L
lat_to_deg() (in module ginga.util.wcs), 283
load_asdf() (ginga.util.io.io_asdf.ASDFFileHandler

method), 277
load_asdf() (in module ginga.util.io.io_asdf), 275
load_asdf_hdu_in_fits()

(ginga.util.io.io_asdf.ASDFFileHandler
method), 277

load_file() (ginga.util.io.io_asdf.ASDFFileHandler
method), 277

load_file() (in module ginga.util.io.io_asdf), 275
load_from_asdf() (in module ginga.util.io.io_asdf),

276
load_idx() (ginga.util.io.io_asdf.ASDFFileHandler

method), 277
load_idx_cont() (ginga.util.io.io_asdf.ASDFFileHandler

method), 277
lon_to_deg() (in module ginga.util.wcs), 283
lookup_color() (in module ginga.colors), 266
lookup_object_tag()

(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

lorentz() (ginga.util.iqcalc_astropy.IQCalc method),
294

lower_object() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

lower_object_by_tag()
(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

lowerObject() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

lowerObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

M
main() (ginga.rv.main.ReferenceViewer method), 265
make_cursor() (ginga.ImageView.ImageViewBase

method), 254
make_timer() (ginga.ImageView.ImageViewBase

method), 254
MedianFilter (class in ginga.AutoCuts), 273
Minmax (class in ginga.AutoCuts), 271
module

ginga.AutoCuts, 267
ginga.canvas.CanvasMixin, 217
ginga.canvas.CanvasObject, 219
ginga.canvas.CompoundMixin, 225
ginga.canvas.coordmap, 228

320 Index

ginga Documentation, Release 3.3.0

ginga.canvas.DrawingMixin, 233
ginga.canvas.types.layer, 237
ginga.colors, 266
ginga.ImageView, 238
ginga.rv.main, 263
ginga.rv.plugins.Blink, 126
ginga.rv.plugins.Catalogs, 138
ginga.rv.plugins.ChangeHistory, 91
ginga.rv.plugins.Collage, 144
ginga.rv.plugins.Colorbar, 80
ginga.rv.plugins.ColorMapPicker, 84
ginga.rv.plugins.Command, 95
ginga.rv.plugins.Compose, 147
ginga.rv.plugins.Contents, 78
ginga.rv.plugins.Crosshair, 117
ginga.rv.plugins.Cursor, 80
ginga.rv.plugins.Cuts, 113
ginga.rv.plugins.Downloads, 98
ginga.rv.plugins.Drawing, 145
ginga.rv.plugins.Errors, 85
ginga.rv.plugins.FBrowser, 146
ginga.rv.plugins.Header, 71
ginga.rv.plugins.Histogram, 115
ginga.rv.plugins.Info, 70
ginga.rv.plugins.LineProfile, 127
ginga.rv.plugins.Log, 94
ginga.rv.plugins.Mosaic, 142
ginga.rv.plugins.MultiDim, 112
ginga.rv.plugins.Operations, 81
ginga.rv.plugins.Overlays, 120
ginga.rv.plugins.Pan, 68
ginga.rv.plugins.Pick, 99
ginga.rv.plugins.Pipeline, 150
ginga.rv.plugins.PixTable, 129
ginga.rv.plugins.PlotTable, 149
ginga.rv.plugins.Preferences, 131
ginga.rv.plugins.RC, 85
ginga.rv.plugins.Ruler, 110
ginga.rv.plugins.SAMP, 92
ginga.rv.plugins.SaveImage, 96
ginga.rv.plugins.ScreenShot, 151
ginga.rv.plugins.Thumbs, 75
ginga.rv.plugins.Toolbar, 68
ginga.rv.plugins.TVMark, 122
ginga.rv.plugins.TVMask, 124
ginga.rv.plugins.WBrowser, 82
ginga.rv.plugins.WCSAxes, 121
ginga.rv.plugins.WCSMatch, 89
ginga.rv.plugins.Zoom, 73
ginga.util.ap_region, 284
ginga.util.io.io_asdf, 275
ginga.util.iqcalc, 285
ginga.util.iqcalc_astropy, 292
ginga.util.wcs, 279

ginga.util.wcsmod, 278
moffat() (ginga.util.iqcalc.IQCalc method), 290
moffat() (ginga.util.iqcalc_astropy.IQCalc method),

294
move_delta() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
move_delta_pt() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
move_delta_pt() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
move_to() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223
move_to_pt() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 223

N
name (ginga.util.io.io_asdf.ASDFFileHandler attribute),

277
NativeMapper (class in ginga.canvas.coordmap), 228
num_selected() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236

O
objlist_select() (ginga.util.iqcalc.IQCalc method),

290
offset_pt() (ginga.canvas.coordmap.CartesianMapper

method), 231
offset_pt() (ginga.canvas.coordmap.DataMapper

method), 231
offset_pt() (ginga.canvas.coordmap.NativeMapper

method), 229
offset_pt() (ginga.canvas.coordmap.OffsetMapper

method), 232
offset_pt() (ginga.canvas.coordmap.PercentageMapper

method), 230
offset_pt() (ginga.canvas.coordmap.WCSMapper

method), 233
offset_pt() (ginga.canvas.coordmap.WindowMapper

method), 229
offset_to_data() (ginga.ImageView.ImageViewBase

method), 254
offset_to_window() (ginga.ImageView.ImageViewBase

method), 254
OffsetMapper (class in ginga.canvas.coordmap), 232
onscreen_message() (ginga.ImageView.ImageViewBase

method), 254
onscreen_message_off()

(ginga.ImageView.ImageViewBase method),
254

open_file() (ginga.util.io.io_asdf.ASDFFileHandler
method), 278

P
pan_cb() (ginga.ImageView.ImageViewBase method),

Index 321

ginga Documentation, Release 3.3.0

255
panset_pct() (ginga.ImageView.ImageViewBase

method), 255
panset_xy() (ginga.ImageView.ImageViewBase

method), 255
PercentageMapper (class in ginga.canvas.coordmap),

230
pick_field() (ginga.util.iqcalc.IQCalc method), 290
pick_hover() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
pick_key() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
pick_motion() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
pick_start() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
pick_stop() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
point_within_line()

(ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

point_within_radius()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

position_at_canvas_xy()
(ginga.ImageView.ImageViewBase method),
255

position_cursor() (ginga.ImageView.ImageViewBase
method), 255

prepare_image() (ginga.ImageView.ImageViewBase
method), 255

process_drawing() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

Q
qualsize() (ginga.util.iqcalc.IQCalc method), 291

R
ra_deg_to_str() (in module ginga.util.wcs), 281
raDegToString() (in module ginga.util.wcs), 283
raise_object() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
raise_object_by_tag()

(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

raiseObject() (ginga.canvas.CompoundMixin.CompoundMixin
method), 227

raiseObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

recalc_color_list() (in module ginga.colors), 266
recalc_transforms()

(ginga.ImageView.ImageViewBase method),
255

redraw() (ginga.canvas.CanvasMixin.CanvasMixin
method), 219

redraw() (ginga.ImageView.ImageViewBase method),
255

redraw_data() (ginga.ImageView.ImageViewBase
method), 255

redraw_now() (ginga.ImageView.ImageViewBase
method), 255

ReferenceViewer (class in ginga.rv.main), 264
refresh_timer_cb() (ginga.ImageView.ImageViewBase

method), 256
register_canvas_type()

(ginga.canvas.DrawingMixin.DrawingMixin
method), 236

register_canvas_type() (in module
ginga.canvas.CanvasObject), 220

register_canvas_types() (in module
ginga.canvas.CanvasObject), 220

register_for_cursor_drawing()
(ginga.canvas.DrawingMixin.DrawingMixin
method), 236

reload_image() (ginga.ImageView.ImageViewBase
method), 256

remove_color() (in module ginga.colors), 267
rerotate_by_deg() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
rescale_by() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
rescale_by_factors()

(ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

reschedule_redraw()
(ginga.ImageView.ImageViewBase method),
256

reset_limits() (ginga.ImageView.ImageViewBase
method), 256

resolve_color() (in module ginga.colors), 266
restore_cmap() (ginga.ImageView.ImageViewBase

method), 256
restore_contrast() (ginga.ImageView.ImageViewBase

method), 256
rgbmap_cb() (ginga.ImageView.ImageViewBase

method), 256
roll_objects() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
rotate() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
rotate() (ginga.canvas.CompoundMixin.CompoundMixin

method), 227
rotate() (ginga.ImageView.ImageViewBase method),

256
rotate_by() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
rotate_by_deg() (ginga.canvas.CanvasObject.CanvasObjectBase

322 Index

ginga Documentation, Release 3.3.0

method), 224
rotate_deg() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
rotate_pt() (ginga.canvas.coordmap.CartesianMapper

method), 231
rotate_pt() (ginga.canvas.coordmap.DataMapper

method), 231
rotate_pt() (ginga.canvas.coordmap.NativeMapper

method), 229
rotate_pt() (ginga.canvas.coordmap.OffsetMapper

method), 232
rotate_pt() (ginga.canvas.coordmap.PercentageMapper

method), 230
rotate_pt() (ginga.canvas.coordmap.WCSMapper

method), 233
rotate_pt() (ginga.canvas.coordmap.WindowMapper

method), 229
rotation_change_cb()

(ginga.ImageView.ImageViewBase method),
256

S
save_plain_image_as_file()

(ginga.ImageView.ImageViewBase method),
256

save_profile() (ginga.ImageView.ImageViewBase
method), 257

save_rgb_image_as_file()
(ginga.ImageView.ImageViewBase method),
257

scale_and_shift_cmap()
(ginga.ImageView.ImageViewBase method),
257

scale_by() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

scale_by_factors() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

scale_by_factors() (ginga.canvas.CompoundMixin.CompoundMixin
method), 228

scale_cb() (ginga.ImageView.ImageViewBase method),
257

scale_font() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

scale_to() (ginga.ImageView.ImageViewBase method),
257

scan_rgbtxt() (in module ginga.colors), 267
scan_rgbtxt_buf() (in module ginga.colors), 267
select_add() (ginga.canvas.DrawingMixin.DrawingMixin

method), 236
select_contains() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
select_contains_pt()

(ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

select_contains_pt()
(ginga.canvas.CompoundMixin.CompoundMixin
method), 228

select_items_at() (ginga.canvas.CompoundMixin.CompoundMixin
method), 228

select_remove() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

set_attr_all() (ginga.canvas.CompoundMixin.CompoundMixin
method), 228

set_autocenter() (ginga.ImageView.ImageViewBase
method), 257

set_autocut_params()
(ginga.ImageView.ImageViewBase method),
257

set_autocuts() (ginga.ImageView.ImageViewBase
method), 257

set_background() (ginga.ImageView.ImageViewBase
method), 258

set_bg() (ginga.ImageView.ImageViewBase method),
258

set_calg() (ginga.ImageView.ImageViewBase method),
258

set_canvas() (ginga.ImageView.ImageViewBase
method), 258

set_cmap() (ginga.ImageView.ImageViewBase method),
258

set_color_algorithm()
(ginga.ImageView.ImageViewBase method),
258

set_color_map() (ginga.ImageView.ImageViewBase
method), 258

set_coordmap() (ginga.ImageView.ImageViewBase
method), 258

set_cursor() (ginga.ImageView.ImageViewBase
method), 258

set_data() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

set_data() (ginga.ImageView.ImageViewBase method),
259

set_data_points() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

set_dataobj() (ginga.ImageView.ImageViewBase
method), 259

set_desired_size() (ginga.ImageView.ImageViewBase
method), 259

set_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

set_drawcolor() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

set_drawtype() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

set_enter_focus() (ginga.ImageView.ImageViewBase
method), 259

set_fg() (ginga.ImageView.ImageViewBase method),

Index 323

ginga Documentation, Release 3.3.0

259
set_foreground() (ginga.ImageView.ImageViewBase

method), 259
set_image() (ginga.ImageView.ImageViewBase

method), 259
set_imap() (ginga.ImageView.ImageViewBase method),

259
set_intensity_map()

(ginga.ImageView.ImageViewBase method),
259

set_limits() (ginga.ImageView.ImageViewBase
method), 260

set_name() (ginga.ImageView.ImageViewBase method),
260

set_onscreen_message()
(ginga.ImageView.ImageViewBase method),
260

set_pan() (ginga.ImageView.ImageViewBase method),
260

set_point_by_index()
(ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

set_redraw_lag() (ginga.ImageView.ImageViewBase
method), 260

set_refresh_rate() (ginga.ImageView.ImageViewBase
method), 260

set_renderer() (ginga.ImageView.ImageViewBase
method), 260

set_rgbmap() (ginga.ImageView.ImageViewBase
method), 260

set_scale() (ginga.ImageView.ImageViewBase
method), 260

set_scale_base_xy()
(ginga.ImageView.ImageViewBase method),
260

set_scale_limits() (ginga.ImageView.ImageViewBase
method), 261

set_surface() (ginga.canvas.DrawingMixin.DrawingMixin
method), 237

set_window_size() (ginga.ImageView.ImageViewBase
method), 261

set_zoom_algorithm()
(ginga.ImageView.ImageViewBase method),
261

set_zoomrate() (ginga.ImageView.ImageViewBase
method), 261

setAttrAll() (ginga.canvas.CompoundMixin.CompoundMixin
method), 228

setSurface() (ginga.canvas.DrawingMixin.DrawingMixin
method), 236

setup_edit() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

shift_cmap() (ginga.ImageView.ImageViewBase
method), 261

show_color_bar() (ginga.ImageView.ImageViewBase
method), 261

show_focus_indicator()
(ginga.ImageView.ImageViewBase method),
261

show_mode_indicator()
(ginga.ImageView.ImageViewBase method),
261

show_pan_mark() (ginga.ImageView.ImageViewBase
method), 261

simple_wcs() (in module ginga.util.wcs), 282
starsize() (ginga.util.iqcalc.IQCalc method), 291
start_refresh() (ginga.ImageView.ImageViewBase

method), 261
StdDev (class in ginga.AutoCuts), 272
stop_refresh() (ginga.ImageView.ImageViewBase

method), 261
subcanvas_updated_cb()

(ginga.canvas.CanvasMixin.CanvasMixin
method), 219

swap_objects() (ginga.canvas.CompoundMixin.CompoundMixin
method), 228

swapxy() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

switch_cursor() (ginga.ImageView.ImageViewBase
method), 261

sync_state() (ginga.canvas.CanvasObject.CanvasObjectBase
method), 224

T
take_focus() (ginga.ImageView.ImageViewBase

method), 262
to_data() (ginga.canvas.coordmap.CartesianMapper

method), 231
to_data() (ginga.canvas.coordmap.DataMapper

method), 231
to_data() (ginga.canvas.coordmap.NativeMapper

method), 229
to_data() (ginga.canvas.coordmap.OffsetMapper

method), 232
to_data() (ginga.canvas.coordmap.PercentageMapper

method), 230
to_data() (ginga.canvas.coordmap.WCSMapper

method), 233
to_data() (ginga.canvas.coordmap.WindowMapper

method), 229
trans_coeff() (in module ginga.util.wcs), 281
transform() (ginga.ImageView.ImageViewBase

method), 262
transform_cb() (ginga.ImageView.ImageViewBase

method), 262

U
update_canvas() (ginga.canvas.CanvasMixin.CanvasMixin

324 Index

ginga Documentation, Release 3.3.0

method), 219
update_image() (ginga.ImageView.ImageViewBase

method), 262
update_params() (ginga.AutoCuts.AutoCutsBase

method), 271
update_widget() (ginga.ImageView.ImageViewBase

method), 262
use_coordmap() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
use_coordmap() (ginga.canvas.CompoundMixin.CompoundMixin

method), 228

V
viewable() (ginga.ImageView.ImageViewBase class

method), 262
vname (ginga.ImageView.ImageViewBase attribute), 244
vtypes (ginga.ImageView.ImageViewBase attribute), 244

W
WCSMapper (class in ginga.canvas.coordmap), 232
window_has_origin_upper()

(ginga.ImageView.ImageViewBase method),
262

window_to_offset() (ginga.ImageView.ImageViewBase
method), 262

WindowMapper (class in ginga.canvas.coordmap), 229
within_line() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224
within_radius() (ginga.canvas.CanvasObject.CanvasObjectBase

method), 224

Z
zoom_fit() (ginga.ImageView.ImageViewBase method),

262
zoom_in() (ginga.ImageView.ImageViewBase method),

262
zoom_out() (ginga.ImageView.ImageViewBase method),

262
zoom_to() (ginga.ImageView.ImageViewBase method),

263
zoomsetting_change_cb()

(ginga.ImageView.ImageViewBase method),
263

ZScale (class in ginga.AutoCuts), 274

Index 325

	I About Ginga
	II Copyright and License
	III Requirements and Supported Platforms
	IV Getting the Source
	V Building and Installation
	Installation
	Dependencies
	REQUIRED
	BACKENDS (one or more)
	RECOMMENDED

	Notes on Supported Widget Sets
	Qt/PySide
	GTK
	Tk
	Matplotlib
	HTML5 web browser

	Basic Installation
	Installation from Source
	Platform Specific Instructions
	Linux (Debian/Ubuntu)
	Mac/Windows/Linux (others)
	Anaconda

	Running tests
	Building documentation

	VI Documentation
	What’s New
	Ver 3.3.0 (2022-02-16)
	Ver 3.2.0 (2021-06-07)
	Ver 3.1.0 (2020-07-20)
	Ver 3.0.0 (2019-09-20)
	Ver 2.7.2 (2018-11-05)
	Ver 2.7.1 (2018-07-09)
	Ver 2.7.0 (2018-02-02)
	Ver 2.6.6 (2017-11-02)
	Ver 2.6.5 (2017-07-31)
	Ver 2.6.4 (2017-06-07)
	Ver 2.6.3 (2017-03-30)
	Ver 2.6.2 (2017-02-16)
	Ver 2.6.1 (2016-12-22)
	Ver 2.6.0 (2016-11-16)
	Ver 2.2.20160505170200
	Ver 2.2.20150203025858
	Ver 2.1.20141203011503
	Ver 2.0.20140905210415
	Ver 2.0.20140811184717
	Ver 2.0.20140626204441
	Ver 2.0.20140520035237
	Ver 2.0.20140417032430
	Ver 2.0.20140412025038
	Ver 2.0.20140114070809
	Ver 2.0.20131218034517
	Ver 2.0.20131201230846
	Ver 2.0.20131030190529
	Ver 1.5-20131022230350
	Ver 1.5-20130923184124
	Efficiency improvements

	Ver 1.4.20130718005402
	New Agg backend
	New Tk backend
	AutoCuts
	Etc

	Quick Reference
	Main image window
	Mode control commands
	About modes
	“meta” mode

	Panning and zooming commands
	Cut levels and colormap commands
	Transform commands
	Pan mode
	Freepan mode
	Dist mode
	Cuts mode
	Contrast mode
	Rotate mode
	Cmap mode
	Plot mode
	Autozoom setting
	Autocenter setting
	Autocuts setting
	Reference Viewer Only

	User’s Manual
	Introduction
	About
	Features

	Core Concepts
	Workspaces
	Channels
	Channel Viewers
	Channel Settings

	Plugins
	Modes

	General Operation
	Keyboard and mouse operations
	Loading a FITS or RGB image file
	Zooming and panning
	Pan position

	How Ginga maps an image to color
	Setting cut levels
	Manually setting cut levels
	Automatically setting cut levels
	Setting the color distribution algorithm
	Making contrast adjustments
	Changing the color and intensity maps

	Intensity Maps
	Color Maps

	Transforming the image view

	Plugins
	Global plugins
	Toolbar
	Pan
	Info
	Header
	Zoom
	Thumbs
	Contents
	Colorbar
	Cursor
	Operations
	WBrowser
	FBrowser (Open File)
	ColorMapPicker
	Errors
	RC
	WCSMatch
	ChangeHistory
	SAMP Control
	Log
	Command
	SaveImage (Save File)
	Downloads

	Local plugins
	Pick
	Ruler
	MultiDim
	Cuts
	Histogram
	Crosshair
	Overlays
	WCSAxes
	TVMark
	TVMask
	Blink
	LineProfile
	PixTable
	Preferences
	Catalogs
	Mosaic
	Collage
	Drawing
	FBrowser
	Compose
	PlotTable
	Pipeline
	ScreenShot

	Customizing Ginga
	Configuration Options
	General Config Files
	Binding Config File
	Plugin Config Files
	Channel Config Files

	Customizing the Layout
	Format of the Layout Table

	Customizing the set of plugins
	Custom plugin directory

	Customizing the Reference Viewer (with Python) During Initialization
	Workspace configuration
	Start Plugins and Create Channels
	Adding Plugins
	Disabling Plugins

	Making a Custom Startup Script

	Developer’s Manual
	Image Data Wrappers
	AstroImage
	RGBImage

	Ginga Image Viewer Operations
	Manipulating the view programatically
	Loading the Viewer
	Scaling
	Scaling Limits

	Zooming
	Zoom Algorithms

	Panning
	Transforms
	Rotation
	Cut Levels
	Auto cut levels

	Color Distribution
	Color Map
	Intensity Map
	Auto configuration
	Miscellaneous Operations

	Ginga Canvas Graphics
	Canvases and Canvas Objects
	Viewers
	Support for Astropy regions

	Plots
	Plot objects
	Support for autoscaling axes
	autoaxis_x
	autoaxis_y

	Interactive Viewer Operations on Graphs
	Zooming Graphs
	Panning Graphs
	Flipping and swapping

	Time Series Plots

	Developing with Ginga
	Writing plugins for the reference viewer
	Anatomy of a Local Ginga Plugin
	A little more fleshed out example: MyLocalPlugin
	Launching and Debugging Your Plugin
	A more complex example: The Ruler Plugin
	Writing a Global Plugin
	A template: MyGlobalPlugin
	Writing Separately Installable Plugins

	Using the Basic Ginga Viewer Object in Python Programs
	Using the basic rendering class in new programs
	Graphics plotting with Ginga
	Rendering into Matplotlib Figures
	Rendering into HTML5 canvases
	Writing widget toolkit independent code

	Using Ginga with Jupyter
	Ginga Internals
	Introduction
	The Model
	The View
	The Controller

	Graphics on Ginga
	Miscellaneous Topics
	I want to use my own World Coordinate System!
	I want to use my own file storage format, not FITS!
	Adding a new kind of file opener
	Porting Ginga to a New Widget Set

	Optimizing Performance
	OpenCv Acceleration

	FAQs
	Platforms
	Does Ginga run on Mac/Windows/Linux/XYZ?
	Does Ginga work with Python 3?
	Does Ginga work with Python 2?

	Toolkits
	What GUI toolkit does Ginga use?

	Control Bindings
	Can I get DS9-like user interface mappings?
	Can I customize the user interface mappings?
	Where can I find a quick reference of the bindings?

	Miscellaneous
	Does Ginga work with SAMP?
	Is it possible to control Ginga remotely?
	When are you going to add the XYZ feature that DS9 has?
	Can I get Ginga reference viewer to save its size and position?

	World Coordinate System
	What library are you using for WCS?
	How easy is it for Ginga to support a custom WCS?

	I/O and File Formats
	What library are you using for FITS I/O?
	How easy is it for Ginga to support a new file formats besides FITS?

	Problems Displaying Images

	Reference/API
	ginga.canvas.CanvasMixin Module
	Classes
	CanvasMixin

	ginga.canvas.CanvasObject Module
	Functions
	get_canvas_type
	get_canvas_types
	register_canvas_type
	register_canvas_types

	Classes
	CanvasObjectBase

	ginga.canvas.CompoundMixin Module
	Classes
	CompoundMixin

	ginga.canvas.coordmap Module
	Classes
	NativeMapper
	WindowMapper
	PercentageMapper
	CartesianMapper
	DataMapper
	OffsetMapper
	WCSMapper

	ginga.canvas.DrawingMixin Module
	Classes
	DrawingMixin

	ginga.canvas.types.layer Module
	Classes
	CompoundObject
	Canvas
	DrawingCanvas

	Class Inheritance Diagram

	ginga.ImageView Module
	Classes
	ImageViewBase

	ginga.rv.main Module
	Classes
	ReferenceViewer

	ginga.colors Module
	Functions
	recalc_color_list
	lookup_color
	resolve_color
	add_color
	remove_color
	get_colors
	scan_rgbtxt
	scan_rgbtxt_buf

	ginga.AutoCuts Module
	Functions
	get_autocuts
	get_autocuts_names

	Classes
	AutoCutsBase
	Minmax
	Histogram
	StdDev
	MedianFilter
	ZScale

	ginga.util.io.io_asdf Module
	Functions
	load_file
	load_asdf
	load_from_asdf

	Classes
	ASDFFileHandler

	Class Inheritance Diagram

	ginga.util.wcsmod Package
	Functions
	get_wcs_class

	ginga.util.wcs Module
	Functions
	hmsToDeg
	dmsToDeg
	decTimeToDeg
	degToHms
	degToDms
	arcsecToDeg
	hmsStrToDeg
	dmsStrToDeg
	ra_deg_to_str
	dec_deg_to_str
	trans_coeff
	eqToEq2000
	get_xy_rotation_and_scale
	get_rotation_and_scale
	get_relative_orientation
	simple_wcs
	deg2fmt
	dispos
	deltaStarsRaDecDeg1
	deltaStarsRaDecDeg2
	get_starsep_RaDecDeg
	add_offset_radec
	get_RaDecOffsets
	lon_to_deg
	lat_to_deg
	raDegToString
	decDegToString

	ginga.util.ap_region Module
	Functions
	astropy_region_to_ginga_canvas_object
	add_region
	ginga_canvas_object_to_astropy_region

	ginga.util.iqcalc Module
	Functions
	get_mean
	get_median

	Classes
	IQCalcError
	IQCalc

	ginga.util.iqcalc_astropy Module
	Classes
	IQCalc

	VII Bug Reports
	VIII Developer Info
	IX Etymology
	X Pronunciation
	Python Module Index
	Index

