

Ginga: Image Viewer and Toolkit

About Ginga

Ginga is a toolkit designed for building viewers for scientific image
data in Python, visualizing 2D pixel data in NumPy [http://www.numpy.org/] arrays.
It can view astronomical data such as contained in files based on the
FITS (Flexible Image Transport System) [https://en.wikipedia.org/wiki/FITS] file format.
It is written and is maintained by software engineers at the Subaru Telescope, National
Astronomical Observatory of Japan.

The Ginga toolkit centers around an image display class which supports
zooming and panning, color and intensity mapping, a choice of several
automatic cut levels algorithms and canvases for plotting scalable
geometric forms. In addition to this widget, a general purpose
“reference” FITS viewer is provided, based on a plugin framework.

A fairly complete set of “standard” plugins are provided for features
that we expect from a modern FITS viewer: panning and zooming windows,
star catalog access, cuts, star pick/FWHM [https://en.wikipedia.org/wiki/Full_width_at_half_maximum], thumbnails, etc.

Copyright and License

Copyright (c) 2011-2018 Eric R. Jeschke. All rights reserved.

Ginga is distributed under an open-source BSD licence. Please see the
file LICENSE.txt in the top-level directory for details.

Requirements and Supported Platforms

Because Ginga is written in pure Python, it can run on any platform that
has the required Python modules and has a supported widget set.
The basic Ginga display class supports the Qt [https://en.wikipedia.org/wiki/Qt_(software)] (4 and 5), PySide [https://wiki.qt.io/PySide], Gtk [https://www.gtk.org/] (2
and 3), Tk [http://wiki.tcl.tk/487] widget sets natively as well as any Matplotlib Figure, and
HTML5 canvases in a web browser. The full reference viewer supports Qt
and Gtk variants. Ginga can also be used in Jupyter notebooks [http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html].

Getting the Source

Clone from Github:

$ git clone https://github.com/ejeschke/ginga.git

To get a zip or tar ball instead, see the links on About Ginga [http://ejeschke.github.io/ginga/].

Building and Installation

Download and install from pip:

$ pip install ginga

Or, if you have downloaded the source, go into the top-level directory and run the following:

$ python setup.py install

The reference viewer can then be run using the command ginga.

	Detailed Installation Instructions for Ginga

Documentation

	What’s New in Ginga?

	Ginga Quick Reference

	The Ginga FAQ

	The Ginga Viewer and Toolkit Manual

	Optimizing Ginga’s Performance

	Reference/API

Some training videos are available in the
downloads [https://github.com/ejeschke/ginga/downloads] page on
Github.

Be sure to also check out the
Ginga wiki [https://github.com/ejeschke/ginga/wiki].

Bug Reports

Please file an issue with the issue tracker [https://github.com/ejeschke/ginga/issues]
on Github.

Ginga has a logging facility, and it would be most helpful if you can
invoke Ginga with the logging options to capture any logged errors:

$ ginga --loglevel=20 --log=ginga.log

If the difficulty is with non-display or non-working World Coordinate System (WCS) [http://www.atnf.csiro.au/people/mcalabre/WCS/] for a
particular image file please be ready to supply the file for our aid in
debugging.

Developer Info

In the source code examples/* directories, see example{1,2}_gtk.py (Gtk [https://www.gtk.org/]),
example{1,2}_qt.py (Qt [https://en.wikipedia.org/wiki/Qt_(software)]), example{1,2}_tk.py (Tk [http://wiki.tcl.tk/487]) or
example{1,2,3,4,5}_mpl.py (Matplotlib [https://matplotlib.org/]).
There is more information for developers in the The Ginga Viewer and Toolkit Manual.

See also the Module Index for a complete list of the available modules.

Etymology

“Ginga” is the romanized spelling of the Japanese word “銀河” (Hiragana:
ぎんが), meaning “galaxy” (in general) and, more familiarly, the Milky
Way. This viewer was written by software engineers at
Subaru Telescope [http://subarutelescope.org/],
National Astronomical Observatory of Japan—thus the connection.

Pronunciation

Ginga the viewer may be pronounced “ging-ga” (proper Japanese) or
“jing-ga” (perhaps easier for Westerners). The latter pronunciation
has meaning in the Brazilian dance/martial art Capoeira [https://en.wikipedia.org/wiki/Capoeira]: a fundamental
rocking or back and forth swinging motion. Pronunciation as “jin-ja”
is considered poor form.

Detailed Installation Instructions for Ginga

Dependences

Ginga is written entirely in Python, and only uses supporting Python
packages. There is nothing to compile (unless you need to compile one
of the supporting packages).

On recent Linux, Mac and Windows versions, all of the packages are
available in binary (installable) form. It should not be necessary
to compile anything, but as always, your mileage may vary.

REQUIRED

	python (either v. 2.7 OR v. 3.4 or higher)

	numpy (v. 1.7 or higher)

Highly recommended, because some features will not be available without it:

	scipy

	pillow

	opencv

For opening FITS [https://fits.gsfc.nasa.gov/] files you will
need one of the following packages:

	astropy

	fitsio

For WCS [https://fits.gsfc.nasa.gov/fits_wcs.html] resolution
you will need one of the following packages:

	astropy

	kapteyn

	astLib

	starlink

BACKENDS (one or more)

Ginga can draw its output to a number of different back ends.
Depending on which GUI toolkit you prefer (and what you want to
do), you will need at least one of the following:

	python-qt4

	python-qt5

	python-pyside (qt4 alternative)

	python-gtk (gtk2) AND python-cairo

	python gtk3 (gi) AND python-cairo

	python-Tkinter

	matplotlib

	tornado

	aggdraw

	PIL (pillow)

	OpenCv

RECOMMENDED

Certain plugins in the reference viewer (or features of those plugins)
will not work without the following packages:

	matplotlib (required by: Pick, Cuts, Histogram, LineProfile)

	webkit (required by: WBrowser (used for online help))

	scipy (required by: Pick, some built-in auto cuts algorithms [http://ginga.readthedocs.io/en/latest/manual/operation.html#automatically-setting-cut-levels]
used when you load an image)

	astropy (required by: SAMP)

To save a movie:

	mencoder (required by: Cuts)

Helpful, but not necessary (may optimize or speed up certain operations):

	python-opencv (speeds up rotation, mosaicing and some transformations)

	python-pyopencl (speeds up rotation, mosaicing and some transformations)

	python-numexpr (speeds up rotation a little)

	python-filemagic (aids in identifying files when opening them)

	python-PIL or pillow (useful for various RGB file manipulations)

Notes on Supported Widget Sets

In the discussion below, we differentiate between the Ginga viewing
widget, such as used in the examples/*/example*.py programs and the
full reference viewer, which includes many plugins (scripts/ginga).

Note

For the full reference viewer, Mac and Windows users
should probably install the Qt version, unless you are
the tinkering sort. Linux can use either Qt or Gtk fine.

Qt/PySide

Ginga can use either PyQt or PySide, version 4 or 5. It will auto-detect
which one is installed. There is support for both the basic widget and
the full reference viewer.

Note

If you have both installed and you want to use a specific one
then set the environment variable QT_API to either “pyqt” or
“pyside”. This is the same procedure as for Matplotlib.

Gtk

Ginga can use either Gtk 2 (with pygtk) or gtk 3 (with gi). (If you have
an older version of pycairo package you may need to install a newer version
from github.com/pygobject/pycairo).

Tk

Ginga’s Tk support is limited to the viewing widget itself. For
overplotting (graphics) support, you will also need:

	“pillow”/PIL package

	“OpenCv” module

	“aggdraw” module (which you can find
here [https://github.com/ejeschke/aggdraw] ; supports Python 2
only).

Matplotlib

Ginga can render directly into a Matplotlib figure. Support is limited
to the viewing widget itself. Any of the backends that Matplotlib
supports is usable. Performance is not as good as to one of the
“native” backends listed above, but oh, the overplot options!

HTML5 web browser

Ginga can render into an HTML5 canvas via a web server. Support is limited
to the viewing widget itself. See the notes in example/pg/example1_pg.py.
Tested browsers include Chromium (Chrome), Firefox, and Safari.

Installation from Source

	Clone from github:

$ git clone https://github.com/ejeschke/ginga.git

Or see links on this page [http://ejeschke.github.io/ginga/]
to get a zip or tar ball.

	Unpack, go into the top level directory, and run:

$ python setup.py install

The reference viewer can then be run using the command ginga.

Alternatively you can download and install via pip:

$ pip install ginga

Platform Specific Instructions

Linux

	Install the necessary dependences. If you are on a relatively recent
version of Ubuntu (e.g. v14.04 or later), something like the following
will work:

$ apt-get install python-numpy python-scipy python-matplotlib \
 python-astropy python-qt4 python-webkit python-magic git pip

Or:

$ apt-get install python-numpy python-scipy python-matplotlib \
 python-astropy python-gtk python-cairo python-webkit \
 python-magic git pip

(if you want to use the Gtk version)

	Install ginga with pip:

$ pip install ginga

or by obtaining the source and installing as described above.

Mac

	For Mac users, we recommend installing the
Anaconda distribution [http://continuum.io/downloads].
This distribution already includes all of the necessary packages to run
Ginga.

As an alternative, you also have the choice of Enthought Canopy. The
free version [https://www.enthought.com/canopy-express/] works fine.
After installing this, open the Canopy package manager, search for
“astropy” and install it. Also search for and install “pyside”
(free version of Qt bindings).

	After installing one of these distributions, open a Terminal and
install Ginga via “pip install ginga”. You can then run the reference
viewer via the command “ginga”.

Note

Ginga can be installed and run fine using a working Macports or
Homebrew installation. Simply follow the package advice given
above under the Linux instructions.

Windows

Anaconda

For Windows users, we recommend installing the
Anaconda distribution.
This distribution already includes all of the necessary packages to run
Ginga.

After installing Anaconda, you can find the reference viewer script as:

Start -> All Programs -> Anaconda -> Anaconda Command Prompt
pythonw Scripts\ginga

Enthought Canopy

As an alternative, you also have the choice of Enthought Canopy.

	Install the free version [https://www.enthought.com/canopy-express/].

	Open the Canopy package manager.

	Search for and install “astropy”.

	Search for and install “pyside” (free version of Qt bindings).

Start -> All Programs -> Enthought Canopy -> Canopy command prompt
pip install ginga
pythonw AppDataLocalEnthoughtCanopyUserScriptsginga

What’s New in Ginga?

Ver 2.7.1 (2018-07-09)

	Fix for image rendering bug which shows last row and column of image
being drawn twice

	Added option to “Compass” draw type to be in pixels (X/Y) or wcs (N/E)

	Changed Pan plugin to attempt to draw both kinds of compasses

	Log plugin enhanced to show lines logged before it was opened

	Info plugin adds convenience controls for “Follow New” and “Raise New”

	WCSMatch plugin enhanced to offer fine grained control over sync

	fixed an issue in Debian build that caused long start up times

	User can dynamically add scrollbars to channel viewers in Preferences

	Made Gtk backend default to ‘gtk3’
- “-t gtk” now invokes gtk3 instead of gtk2
- choose “-t gtk2” if you want the gtk2 back end

	Fixed a bug with opening wildcard-type filespec from the command line

	Fixed an issue in Thumbs plugin with opening FITS tables from the
command line

	Fixes for some keyboard focus (Gtk) and unintentional channel changes
(Qt) when viewer is in MDI mode

	IRAF plugin moved to experimental folder

	Allow setting of initial channel list, local, global and disabled
plugins from general configuration file

	Fix for a bug when using OpenCv acceleration on dtype(‘>f8’) arrays

	Fixed a bug where colormap scale markers were sometimes not spaced
wide enough

	Workaround for failed PDF build in RTD documentation

Ver 2.7.0 (2018-02-02)

	Fix for gtk 4.0 (use “gtk3” backend, it works for 4.0)

	Fix for broken polygon containment test

	Addition of configurable zoom handlers for pan gestures

	Fix for some broken tests under python 2.7

	Update to mode handling via keyboard shortcuts

	addition of a new “meta” mode used primarily for mode switching

	most modes now initiated from meta mode, which frees up keys
for other uses

	see Ginga quick reference for details on how the new bindings work

	Efficiency update for Thumbs plugin when many thumbs are present

	Default for the save_layout option is now True, so the reference
viewer will write out its layout state on exit and restore it on
startup. See documentation in the “customization” section of the
manual.

	Plugins can now be organized by category and these categories are
used to construct a hierarchical Operations menu

	Zoom and Header plugins are now not started by default

	Fix for “sortable” checkbox behavior on Header plugin

	Default keyboard mode type is now ‘locked’ (prev ‘oneshot’)

	Fixes for missing CSS file in installation script

	Less confusing behavior for workspace and toolbar arrow buttons

Ver 2.6.6 (2017-11-02)

	Fix for broken sorting in Contents plugin in gtk backends

	Fix for resize bug in switching in and out of grid view in gtk
backends

	Updated to have efficient support for gtk3

	please install compatible pycairo from github.com/pygobject/pycairo
if you get a “Not implemented yet” exception bubbling up from a
method called cairo.ImageSurface.create_for_data()

	Addition of a “Quick Mode” to the Pick plugin–see documentation

	More consistent font handing between widgets and Ginga canvases

	Bug fix for importing some types of matplotlib color maps

	Add antialiasing for Qt back end

	Bug fixes and enhancements for Qt gestures
- holding shift with pinch now keeps position under cursor

	New Jupyter notebooks back end based on ipywidgets
- requirements: $ pip install ipyevents
- see examples/jupyter-notebook/

	Fixes to various reference viewer plugins

Ver 2.6.5 (2017-07-31)

	Coordinate transforms refactored for speed and code clarity

	Some canvas shapes refactored for better code reuse

	Allow max and min scale limits to be disabled (by None)

	Fixed a bug that prevented the reference viewer from resizing
correctly with Qt back end

	Refactored WCS wrapper module for code clarity

	Set minimum astropy version requirement to 1.X

	Fixed a bug in NAXIS selection GUI (MultiDim plugin)

	Fixed MDI window resizing with Gtk back ends

	Fixed an error where zoom 100% button did not correctly zoom to 1:1 scale

	Several fixes for astropy 2.0 compatibility

	Fixed a bug in the FBrowser plugin when channel displaying a table
and attempting to load a new file

	Fixed a bug when setting the pan position manually by wcs coordinates

	Updates for changes in PIL.ImageCms module

	Fix for window corruption on certain expose events

	New default bindings for touch pads and differentiation from wheel zoom

Ver 2.6.4 (2017-06-07)

	Added new ScreenShot plugin to take PNG/JPEG snaps of the viewer
window

	Enhancements to the Pick plugin

	Added ability to make shapes besides rectangles for enclosing pick area.
Masks out unwanted pixels. Choose the shape in the Settings tab.

	Changed behavior of pick log to only write the log when the user clicks
the save button.

	Changed the name of the save button to “Save as FITS table” to make it
clear what is being written.

	If “Show candidates” is selected in Settings, then ALL of the candidates
are saved to the log.

	Added documentation to the manual

	Bug fix for error when changing radius

	Improvements to layout of Operations menu (plugin categories)

	Colorbar scale now placed below the color wedge and is more legible

	Bug fixes for LineProfile plugin

	Slit function for Cuts plugin can be enabled from GUI

	Bug fixes for Slit function

	Info plugin can now control new image cut/zoom/center settings

	Fixed an issue with the MultiDim plugin that could result in a hang
with some back ends

	New canvas type for displaying WCS grid overlay and new WCSAxes plugin
that uses it

	Bug fixes to scrolling via scrollbars and vert/horiz percentages

	Enhancements to the LineProfile plugin

	several new shapes besides the standard point

	plot multiple lines

Ver 2.6.3 (2017-03-30)

	Fix for issue that stops ginga startup when loading externally
distributed plugins that have errors

	Fix for an issue loading plugins from the command line when they
are nested in a package

	Added bindings for moving +/- pixel delta in X or Y and centering on the
pixel

	Fixes for some key mappings for tk, matplotlib and HTML5 canvas backends

	Fixes for IRAF plugin under python 3

	Fix for a bug using remote control (RC) plugin from python2 client to
python 3 ginga

	Documentation updates

Ver 2.6.2 (2017-02-16)

	Added some colormaps from ds9 that don’t have equivalents in Ginga or
matplotlib

	Fix for recognizing CompImage HDU type when using astropy.io.fits

	Add new experimental OpenGL back end

	Fixes for Tk back end on python 3

	You can now write separately distributed and installable plugins for
the reference viewer that Ginga will find and load on startup

	Added –sep option to load command line files into separate channels

	New help screen feature available for plugins

	Lots of updates to documentation

	Fixed a stability issue with drag and dropping large number of files
under Linux

	Fixes for python3 and several example programs

	Fix for interactive rotation bug under matplotlib back end

Ver 2.6.1 (2016-12-22)

	Added a working MDI workspace for gtk2/gtk3.

	Added scrollbar frames. See examples/qt/example1_qt.py for standalone
widget. Can be added to reference viewer by putting ‘scrollbars = “on”’
in your channel_Image.cfg preferences.

	Reorganized reference viewer files under “rv” folder.

	Improved Pick plugin: nicer contour plot, pick log uses table widget,
pick log saved as a FITS table HDU

	Pick and Zoom plugins can now use a specific color map, rather than
always using the same one as the channel window

	gtk3 reference viewer can now be resized smaller than the original
layout (gtk2 still cannot)

	added ability to save the reference viewer size, layout and position
on screen

	gtk MDI windows now remember their size and location when toggling
workspace types

	Fixes for problems with pinch and scroll gestures with Qt5 backend

	Fixed a bug where scale changes between X and Y axes unexpectedly at
extreme zoom levels

	Fixed a bug where cursor could get stuck on a pan cursor

	Added ability to define a cursor for any mode

	Added documented virtual methods to ImageView base class

	Added a workaround for a bug in early versions of Qt5 where excessive
mouse motion events accumulate in the event queue

Ver 2.6.0 (2016-11-16)

With release 2.6.0 we are moving to a new versioning scheme that makes
use of github tagged releases and a “dev” versioning scheme for updates
between releases.

This release includes many bugfixes and improvements, new canvas types
(XRange and YRange), a Command plugin, WCSMatch plugin, dynamically
configurable workspaces, OpenCv acceleration, an HTML5 backend and much
much more.

Ver 2.2.20160505170200

Ginga has merged the astropy-helpers template. This should make it more
compatible management-wise with other astropy-affiliated packages.

Ver 2.2.20150203025858

Ginga drawing canvas objects now can specify points and radii in world
coordinates degrees and sexigesimal notation.

	default is still data coordinates

	can play with this from Drawing plugin in reference viewer

Ver 2.1.20141203011503

Major updates to the drawing features of ginga:

	new canvas types including ellipses, boxes, triangles, paths, images

	objects are editable: press ‘b’ to go into edit mode to select and
manipulate objects graphically (NOTE: ‘b’ binding is considered
experimental for now–editing interface is still evolving)

	editing: scale, rotate, move; change: fill, alpha transparency, etc.

	editing features available in all versions of the widget

	updated Drawing plugin of reference viewer to make use of all this

Ver 2.0.20140905210415

Updates to the core display and bindings classes:

	improvements to interactive rotation command–now resume rotation from
current value and direction is relative to horizontal motion of mouse

	most keyboard modes are now locking and not oneshot (press to turn on,
press again (or hit escape) to turn off

	additional mouse button functionality in modes (see quick reference)

	some changes to default keyboard bindings (see quick reference)

	changes to auto cuts parameters always result in a new autocut being
done (instead of having to explicity perform the autocut)–users seem
to expect this

	autocenter preference changed from True/False to on/override/off

Reference viewer only: new global plugin “Toolbar” provides GUI buttons
for many operations that previously had only keyboard bindings

Ver 2.0.20140811184717

Codebase has been refactored to work with python3 via the “six” module.
Tests can now be run with py.test as well as nosetest.

Ver 2.0.20140626204441

Support has been added for image overlays. It’s now possible to overlay
RGB images on top of the canvas. The images scale, transform and rotate
wrt the canvas.

Ver 2.0.20140520035237

Auto cut levels algorithms have been updated. “zscale” has been
reinforced by using the module from the “numdisplay” package, which does
a fair sight closer to IRAF than the previous one Ginga was using.
Also, the algorithm “median” (median filtering) makes a comeback. It’s
now fast enough to include and produces more usable results.

Ver 2.0.20140417032430

New interactive command to orient the image by WCS to North=Up. The
default binding to ‘o’ creates left-handed orientation (‘O’ for
right-handed). Added a command to rotate the image in 90 deg
increments. Default binding to ‘e’ rotates by 90 deg (‘E’ for -90
deg).

Ver 2.0.20140412025038

Major update for scale (mapping) algorithms

The scale mapping algorithms (for mapping data values during rendering)
havebeen completely refactored. They are now separated from the RGBMap
class and are pluggable. Furthermore I have redone them modeled after
the ds9 algorithms.

There are now eight algorithms available: linear, log, power, sqrt, squared,
asinh, sinh, histeq. You can choose the mapping from the Preferences plugin
or cycle through them using the binding to the ‘s’ key (Use ‘S’ to reset to
linear). There is also a mouse wheel mapping than can be assigned to
this function if you customize your bindings. It is not enabled by default.

The Preferences plugin has been updated to make the function a little
clearer, since there was some confusion also with the intensity map feature
that is also part of the final color mapping process.

Ver 2.0.20140114070809

	The SAMP plugin has been updated to work with the new astropy.vo.samp
module.

	The Catalogs plugin has been updated to allow the user to define the
radius of the conesearch or image search by drawing a circle (as well as
the previous option–a rectangle).

Ver 2.0.20131218034517

The user interface mapping just got a bit easier to use. Ginga now
provides a way to do most UI remapping just by placing a simple config
file in your ~/.ginga directory. An example for ds9 users is in the
new “examples” folder.

Many simple examples were moved out of “scripts” and stored under
subdirectories (by GUI toolkit) in “examples”.

Ver 2.0.20131201230846

Ginga gets trackpad gestures! The Qt rendering class gets support for
pinch and pan gestures:

	The pinch/rotate gesture works as expected on a Mac trackpad

	The pan gesture is not a two-finger pan but a “non-standard”, Qt-specific
one-finger pan. These are experimental for now, but are enabled by
default in this release.

Also in this release there has been a lot of updates to the
documentation. The developer and internals sections in particular have
a lot of new material.

Ver 2.0.20131030190529

The great renaming

I really dislike it when developers do this, so it pains me to do it now,
but I have performed a mass renaming of classes. FitsImage ended up being
the View in the MVC way of doing things, yet it shared the same naming
style as the model classes AstroImage and PythonImage. This would have
been the source of endless confusion to developers down the road. Also,
PythonImage needed to get renamed to something more akin to what it
actually represents.

So the renaming went like this:

	FitsImage -> ImageView

	FitsImage{XYZ} -> ImageView{XYZ}

	PythonImage -> RGBImage

So we have:

	M: BaseImage, AstroImage, RGBImage

	V: ImageView{XYZ}

	C: Bindings, BindMap

I did this in the brand new 2.0 version so at least devs have a heads up
that things will not be backward compatible.

And I apologize in advance for any renaming and support issues this may
cause for you. Fire up your editor of choice and do a query/replace of
“FitsImage” with “ImageView” and you should be good to go.

Ver 1.5-20131022230350

Ginga gets a Matplotlib backend!

Ginga can now render to any Matplotlib FigureCanvas. The performance using
this backend is not as fast as the others, but it is acceptable and opens
up huge opportunities for overplotting.

See scripts/example{1,2,3,4,5}_mpl.py

Also merges in bug fixes for recent changes to astropy, and support for
other python WCS packages such as kapteyn and astLib.

Ver 1.5-20130923184124

Efficiency improvements

Efforts to improve speed of entire rendering pipeline and widget
specific redrawing

	Decent improvements, Ginga can now render HD video (no sound) at 30
FPS on older hardware (see scripts/example1_video.py). This
translates to a slightly speedier feel overall for many operations
viewing regular scientific files.

	Fixed a bug that gave an error message of
Callback.py:83 (make_callback) | Error making callback ‘field-info’:
‘Readout’ object has no attribute ‘fitsimage’

	Version bump

Ver 1.4.20130718005402

New Agg backend

There is now an Agg rendering version of the ImageView object.

	uses the python “aggdraw” module for drawing; get it here –>
https://github.com/ejeschke/aggdraw

	this will make it easy to support all kinds of surfaces because the
graphics drawing code does not have to be replicated for each
toolkit

	see example code in /scripts/example1_agg_gtk.py

	currently not needed for Gtk, Qt versions of the object

New Tk backend

There is now a Tk rendering version of the ImageView object.

	see ginga.tkw.ImageViewTk

	renders on a Tk canvas

	see example code in /scripts/example{1,2}_tk.py

	you will need the aggdraw module (see above) to use it

AutoCuts

	the ginga.AutoCuts module has been refactored into individual classes
for each algorithm

	
	The Preferences plugin for ginga now exposes all of the parameters

	used for each cut levels algorithm and will save them

Etc

	additions to the manual (still incomplete, but coming along)

	lots of docstrings for methods added (sphinx API doc coming)

	many colors added to the color drawing example programs

	WhatsNew.txt file added

Ginga Quick Reference

Main image window

These keyboard and mouse operations are available when the main image
window has the focus.

Mode control commands

About modes

Certain keystrokes invoke a mode—modes are usually indicated by the
mode indicator: a small black rectangle with the mode name in one corner
of the view. In a mode, there are usually some special key, cursor, and
scroll bindings that override some of the default ones.

Modes additionally have a mode type which can be set to one of the following:

	held: mode is active while the activating key is held down

	oneshot: mode is released by initiating and finishing a cursor drag
or when Esc is pressed, if no cursor drag is performed

	locked: mode is locked until the mode key is pressed again (or Esc)

	softlock: mode is locked until another mode key is pressed (or Esc)

By default, most modes are activated in “oneshot” type, unless the mode
lock is toggled. The mode type is indicated in the brackets after the
mode name in the mode indicator. The following keys are important for
initiating a mode:

	Commmand

	Description

	Space

	Enter “meta” mode. Next keystroke will trigger
a particular mode.

	Esc

	Exit any mode. Does not toggle the lock.

	l

	Toggle the soft lock to the current mode or any
future modes.

	L

	Toggle the normal lock to the current mode or
any future modes.

“meta” mode

Most modes are defined so that they are invoked from a special intermediate
mode called “meta”. In that case a two-key sequence is required to enter
the mode: pressing the key that invokes “meta” and then pressing the key that
invokes the desired mode. The following table shows the modes that can be
triggered from meta mode.

	Commmand

	Description

	Space

	Exit/Enter “meta” mode.

	b

	Enter draw mode (canvas must be enabled to draw).

	q

	Enter pan mode.

	w

	Enter freepan mode.

	r

	Enter rotate mode.

	t

	Enter contrast mode.

	y

	Enter cmap (color map) mode.

	s

	Enter cuts mode.

	d

	Enter dist (distribution) mode.

Note

For modes initiated from meta mode, the locked and softlock
mode types work the same way, which is slightly different
from that described above: you press the meta mode key to
switch back to meta mode, from which you can enter another
mode by pressing its key. You can always press Esc in any
mode (including meta mode) to exit the mode.

Panning and zooming commands

	Commmand

	Description

	Scroll wheel turned

	Zoom in or out.

	Shift + scroll wheel

	Zoom while keeping location under the cursor.

	Ctrl + scroll wheel
turned

	Pan in direction of scroll.

	Digit
(1234567890)

	Zoom image to zoom steps 1, 2, …, 9, 10.

	Shift + Digit

	Zoom image to zoom steps -1, -2, …, -9, -10.

	Backquote (`)

	Zoom image to fit window and center it.

	Minus, Underscore
(-, _)

	Zoom out.

	Equals, Plus
(=, +)

	Zoom in.

	Middle (scroll)
button click

	Set pan position (under cursor).

	p

	Set pan position (under cursor) for zooming.

	Shift + left-click

	Set pan position for zooming.

	Shift + arrow key

	Move pan position 1 pixel in that direction.

	c

	Set pan position to the center of the image.

	q

	Enter Pan mode.

	w

	Free Freepan mode.

	Ctrl + left-drag

	Proportional pan (press and drag left mouse
button.

	slash (/)

	Set autocenter for new images to override.

	question (?)

	Toggle autocenter for images to on or off.

	apostrophe (‘)

	Set autozoom for new images to override.

	double quote (“)

	Toggle autozoom for new images to on or off.

Cut levels and colormap commands

	Commmand

	Description

	a

	Auto cut levels.

	d

	Enter Color Distribution (“dist”) mode.
See Dist mode.

	D

	Reset color distribution algorithm to “linear”.

	s

	Enter Cuts mode.

	t

	Enter Contrast mode.

	T

	Restore the contrast (via colormap) to its
original (unstretched, unshifted) state.

	y

	Enter CMap (color map) mode.

	Y

	Restore the color map to default (gray).

	I

	Invert the color map.

	semicolon (;)

	Set autocuts for new images to override.

	colon (:)

	Toggle autocuts for new images to on or off.

Transform commands

	Commmand

	Description

	Left bracket ([)

	Toggle flip image in X.

	Left brace ({)

	Reset to no flip of image in X.

	Right bracket (])

	Toggle flip image in Y.

	Right brace (})

	Reset to no flip image in Y.

	Backslash (\)

	Swap X and Y axes.

	Vertical bar (|)

	Reset to no swap of X and Y axes.

	r

	Enter Rotate mode.

	R

	Restore rotation to 0 degrees and additionally
undo any flip/swap transformations.

	period (.)

	Increment current rotation by 90 degrees.

	comma (,)

	Decrement current rotation by 90 degrees.

	o

	Orient image by transforms and rotation so that
WCS indicates North=Up and East=Left.

	O

	Orient image by transforms and rotation so that
WCS indicates North=Up and East=Right.

Pan mode

	Commmand

	Description

	left-drag

	Pan proportionally to drag.

	middle-click

	Set pan position.

	right-drag

	Zoom in/out proportionally to L/R drag.

	<Modifier> +
arrow key

	Pan in direction of arrow key. Adding Ctrl
reduces amount, adding Shift reduces more.

	p

	Pan to position under cursor.

	z

	Save current scale (see below for use).

	backquote (`)

	Zoom to fit window and center.

	1

	Pan to cursor and zoom to saved scale level
(or 1:1 if no scale level saved).

	c

	Set pan position to the center of the image.

	slash (/)

	Set autocenter for new images to override.

	question (?)

	Toggle autocenter for images to on or off.

	apostrophe (‘)

	Set autozoom for new images to override.

	double quote (“)

	Toggle autozoom for new images to on or off.

Freepan mode

	Commmand

	Description

	Turn scroll wheel

	Zoom while keeping location under the cursor.

	left-click

	Set pan position, zoom in a step and warp cursor
to pan position (if supported on backend).

	right-click

	Set pan position, zoom out a step and warp
cursor to pan position (if supported on backend).

	middle-drag

	Pans freely over entire image in proportion
to cursor position versus window.

	p, z, backquote, 1,
c, arrow keys

	(Same as for Pan mode.)

Dist mode

	Commmand

	Description

	scroll

	Select distribution from linear, log, etc.

	b, up-arrow

	Select prev distribution in list.

	n, down-arrow

	Select next distribution in list.

	D

	Reset color distribution algorithm to “linear”.

Cuts mode

	Commmand

	Description

	left-drag

	Interactive cut both low and high levels
(vertical cuts low, horizontal cuts high).

	Ctrl + left-drag

	Interactive cut low level only
(horizontal drag).

	Shift + left-drag

	Interactive cut high level only
(horizontal drag).

	scroll

	Coarse (10%) adjustment in/out.

	Ctrl + scroll

	Fine (1%) adjustment in/out.

	a, right-click

	Do an auto level to restore cuts.

	S

	Set cuts to min/max values.

	A

	Set cuts to 0/255 values (for 8bpp RGB images).

	b, up-arrow

	Select prev auto cuts algorithm in list.

	n, down-arrow

	Select next auto cuts algorithm in list.

	semicolon (;)

	Set autocuts for new images to override.

	colon (:)

	Toggle autocuts for new images to on or off.

Contrast mode

	Commmand

	Description

	left-drag

	Interactive shift/stretch colormap (AKA contrast
and bias). L/R controls shift, U/D controls
stretch.

	right-click

	Restore the contrast (via colormap) to its
original (unstretched, unshifted) state.

	T

	Restore the contrast (via colormap) to its
original (unstretched, unshifted) state.

Rotate mode

	Commmand

	Description

	left-drag

	Drag around center of window to rotate image.

	right-click

	Restore rotation to 0 degrees (does not reset
any flip/swap transformations).

	R

	Restore rotation to 0 degrees and additionally
undo any flip/swap transformations.

	Left bracket ([)

	Toggle flip image in X.

	Left brace ({)

	Reset to no flip of image in X.

	Right bracket (])

	Toggle flip image in Y.

	Right brace (})

	Reset to no flip image in Y.

	Backslash (\)

	Swap X and Y axes.

	Vertical bar (|)

	Reset to no swap of X and Y axes.

	period (.)

	Increment current rotation by 90 degrees.

	comma (,)

	Decrement current rotation by 90 degrees.

	o

	Orient image by transforms and rotation so that
WCS indicates North=Up and East=Left.

	O

	Orient image by transforms and rotation so that
WCS indicates North=Up and East=Right.

Cmap mode

	Commmand

	Description

	scroll

	Select color map.

	left-drag

	Rotate color map.

	right-click

	Unrotate color map.

	b, up-arrow

	Select prev color map in list.

	n, down-arrow

	Select next color map in list.

	I

	Toggle invert color map.

	r

	Restore color map to unrotated, uninverted state.

	Ctrl + scroll

	Select intensity map.

	j, left-arrow

	Select prev intensity map in list.

	k, right-arrow

	Select next intensity map in list.

	i

	Restore intensity map to “ramp”.

	c

	Toggle a color bar overlay on the image.

	Y

	Restore the color map to default (‘gray’).

Autozoom setting

The “autozoom” setting can be set to one of the following: “on”, “override”, “once” or
“off”. This affects the behavior of the viewer when changing to a new
image (when done in the typical way) as follows:

	on: the image will be scaled to fit the window

	override: like on, except that once the zoom/scale is changed by the
user manually it turns the setting to off

	once: like on, except that the setting is turned to off after the
first image

	off: an image scaled to the current viewer setting

(In the Reference Viewer, this is set under the “Zoom New” setting in the
channel preferences.)

Autocenter setting

The “autocenter” setting can be set to one of the following: “on”, “override”, “once” or
“off”. This affects the behavior of the viewer when changing to a new
image (when done in the typical way) as follows:

	on: the pan position will be set to the center of the image

	override: like on, except that once the pan position is changed by the
user manually it turns the setting to off

	once: like on, except that the setting is turned to off after the
first image

	off: the pan position is taken from the current viewer setting

(In the Reference Viewer, this is set under the “Center New” setting in the
channel preferences.)

Autocuts setting

The “autocuts” setting can be set to one of following: “on”, “override”, “once” or
“off”. This affects the behavior of the viewer when changing to a new
image (when done in the typical way) as follows:

	on: the cut levels for the image will be calculated and set according
to the autocuts algorithm setting

	override: like on, except that once the cut levels are changed by the
user manually it turns the setting to off

	once: like on, except that the setting is turned to off after the
first image

	off: the cut levels are applied from the current viewer setting

(In the ref:Reference Viewer, this is set under the “Cut New” setting in the
channel preferences.)

Reference Viewer Only

	Commmand

	Description

	H

	Raise Header tab.

	Z

	Raise Zoom tab.

	D

	Raise Dialogs tab.

	C

	Raise Contents tab.

	less than (<)

	Toggle collapse left pane.

	greater than (>)

	Toggle collapse right pane.

	f

	Toggle full screen.

	F

	Panoramic full screen.

	m

	Maximize window.

	J

	Cycle workspace type (tabs/mdi/stack/grid).
Note that “mdi” type is not supported on all
platforms.

	k

	Add a channel with a generic name.

	Left, Right
(arrow keys)

	Previous/Next channel.

	Up, Down
(arrow keys)

	Previous/Next image in channel.

Note

If there are one or more plugins active, additional mouse
or keyboard bindings may be present. In general, the left
mouse button is used to select, pick or move, and the right
mouse button is used to draw a shape for the operation.

On the Mac, Ctrl + mouse button can also be used to draw
or right-click. You can also invoke draw mode as described
above in the section on modes.

The Ginga FAQ

Platforms

Does Ginga run on Mac/Windows/Linux/XYZ?

Ginga is written entirely in the Python programming language, and uses only
supporting Python packages. As long as a platform supports Python
and the necessary packages, it can run some version of Ginga. On recent
Linux, Mac and Windows versions, all of these packages are available.

Does Ginga work with Python 3?

Yes. Just install with Python 3. Of course, you need all the
supporting modules for Python 3 (NumPy, SciPy, Qt 5, etc.)

Toolkits

What GUI toolkit does Ginga use?

It depends what exactly you want to run. Ginga is both a toolkit for
building viewers and also includes a “reference viewer”. The example
programs currently support Qt, GTK, Tk, matplotlib and web browser via
HTML5 canvas. Some other toolkits are being worked on and may be
partially supported.

The full reference viewer currently supports Qt and Gtk. The difference
is explained here, in Section Developing with Ginga.

Can Ginga work with PyQt5?

Yes.

Can Ginga work with Gtk3?

Yes, although the performance is not on par with Gtk2 yet. Cairo for
Python 3 still lacks the important ImageSurface.create_for_data()
API call, so we have to use a workaround. Detailed instructions can be found in Section Detailed Installation Instructions for Ginga.

Control Bindings

Can I get DS9-like user interface mappings?

Save the file called bindings.cfg.ds9 [https://raw.github.com/ejeschke/ginga/master/examples/bindings/bindings.cfg.ds9]
and drop it in your $HOME/.ginga folder as “bindings.cfg”.
Then restart Ginga.

Can I customize the user interface mappings?

Yes. There is more information in the Rebinding Controls section.

Where can I find a quick reference of the bindings?

See Section Ginga Quick Reference.

Miscellaneous

Does Ginga work with SAMP?

Yes. See Section SAMP Control.

Is it possible to control Ginga remotely?

Yes. See Section RC.

When are you going to add the XYZ feature that DS9 has?

Maybe never. The Ginga package design goal was never to replace DS9,
but to provide a full featured Python FITS widget that we could use to
build directly in Python. This is clearly seen if you look at the
example programs in examples//example.py. The idea was to make it
easy for someone to build any kind of custom viewer by having a
full-featured widget to build on.

That said, we did write a reference viewer because we needed something
with many of the convenience features of a modern FITS viewer. DS9 is
almost the size of a small OS, however, and I’m not sure it is wise to
try to match it feature for feature. Instead, since Ginga is
plugin-based, you can write plugins to give you the features you need.
DS9 is a “everything including kitchen sink” kind of viewer, whereas
ginga reference viewer is more like a “take what you need from the
pantry and whip it up” type viewer.

Please send a pull request!

Can I get Ginga reference viewer to save its size and position?

Yes. Add the line “save_layout = True” to your ~/.ginga/general.cfg

If the file does not exist, create it, or copy the one from
ginga/examples/configs/general.cfg.

World Coordinate System

What library are you using for WCS?

We are lucky to have several possible choices for a Python WCS package
compatible with Ginga:
AstLib [http://astlib.sourceforge.net/],
Kapteyn [http://www.astro.rug.nl/software/kapteyn/],
Starlink [https://github.com/timj/starlink-pyast] and
Astropy WCS [http://docs.astropy.org/en/stable/wcs/index.html#astropy-wcs].

Kapteyn and Astropy wrap Mark Calabretta’s “WCSLIB”, astLib wraps
Jessica Mink’s “wcstools”, and I’m not sure what Starlink uses.
Note that Astlib and starlink require pyfits (or Astropy) to be
installed in order to create a WCS object from a FITS header.

To force the use of a particular one add this to your “general.cfg”
in $HOME/.ginga:

WCSpkg = ‘package’

Replace ‘package’ with one of {‘Astropy’, ‘Kapteyn’, ‘Starlink’ or
‘astlib’, ‘choose’}. If you pick ‘choose’ Ginga will try to pick one
for you.

How easy is it for Ginga to support a custom WCS?

Pretty easy. See Section I want to use my own World Coordinate System!.

I/O and File Formats

What library are you using for FITS I/O?

There are two possible choices for a Python FITS file reading package
compatible with Ginga:
Astropy FITS [http://docs.astropy.org/en/stable/io/fits/index.html#astropy-io-fits] and
fitsio [https://github.com/esheldon/fitsio].
Both are originally based on the CFITSIO library (although Astropy’s
version uses very little of it any more, while fitsio is still
tracking the current version).

To force the use of a particular one add this to your “general.cfg”
in $HOME/.ginga:

FITSpkg = ‘package’

Replace ‘package’ with one of {‘Astropy’, ‘fitsio’, ‘choose’}.
If you pick ‘choose’, Ginga will try to pick one for you.

How easy is it for Ginga to support a new file formats besides FITS?

Pretty easy. See Section I want to use my own file storage format, not FITS!.

Problems Displaying Images

Nothing changes in the image when I change settings under “Preferences”.

Note

The Preferences plugin sets the preferences on a per-channel
basis. Make sure the channel you are looking at has the same
name as the prefix for the preferences. For example: “Image”
and “Image: Preferences” or “Image1” and “Image1: Preferences”.

The preferences for a given channel are copied from the
default “Image” channel until they are explicitly set and
saved using this plugin. So if you want preferences that
follow around from channel to channel, save them as
preferences for “Image” and any new channels created will get
those as well, unless you have saved different ones under
those channel names.

Nothing changes in the image when I change the “Auto Cuts” settings under
Preferences. I’ve checked that I’m adjusting preferences for the same
channel that I’m viewing.

Note

What is the setting for “Cut New” under the New Images section
in Preferences for this channel?

If that setting is “Off” then you have elected not to have
Ginga apply Auto Levels when an image is loaded in that
channel. Press ‘a’ in the image window to force an auto cut
levels–it will use the new settings.

No image shows in the display, and I get an error in the terminal about
histogram and keyword “density”.

Note

You need a slightly newer version of NumPy.

I recommend getting at least NumPy>1.9.

The Ginga Viewer and Toolkit Manual

銀河

Ginga is a toolkit for building viewers for scientific data in Python,
particularly astronomical data. It also includes a reference viewer for viewing FITS (Flexible Image Transport System) [https://fits.gsfc.nasa.gov//] files.

The Ginga viewer is based on an image display widget that supports:

	Zooming and panning

	Color and intensity mapping

	A choice of several automatic cut levels algorithms, and

	Canvases for plotting scalable geometric forms.

In addition to the image display widget, the Ginga viewer
provides a flexible plugin framework for extending the viewer with many different features.

A relatively complete set of standard plugins is provided for features that we expect from a modern viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, and thumbnails.

	Introduction
	About

	Features

	Core Concepts
	Workspaces

	Channels

	Plugins

	Modes

	General Operation
	Keyboard and mouse operations

	Loading a FITS image file

	Zooming and panning
	Pan position

	How Ginga maps an image to color
	Setting cut levels

	Transforming the image view

	Ginga Canvas Graphics
	Canvases and Canvas Objects

	Viewers

	Plugins
	Global plugins
	Toolbar

	Pan

	Info

	Header

	Zoom

	Thumbs

	Contents

	Colorbar

	Cursor

	Operations

	WBrowser

	FBrowser (Open File)

	ColorMapPicker

	Errors

	RC

	WCSMatch

	ChangeHistory

	SAMP Control

	Log

	Command

	SaveImage (Save File)

	Local plugins
	Pick

	Ruler

	MultiDim

	Cuts

	Histogram

	Crosshair

	Overlays

	WCSAxes

	TVMark

	TVMask

	Blink

	LineProfile

	PixTable

	Preferences

	Catalogs

	Mosaic

	Drawing

	FBrowser

	Compose

	PlotTable

	Pipeline

	ScreenShot

	Customizing Ginga
	Configuration Options

	Saving the workspace layout between sessions

	Rebinding Controls

	Customizing the Reference Viewer During Initialization

	Workspace configuration
	Format of the Layout Table

	Auto-Start Plugins

	Adding Plugins

	Disabling Plugins

	Making a Custom Startup Script

	Developing with Ginga
	Writing plugins for the reference viewer
	Anatomy of a Local Ginga Plugin

	A little more fleshed out example: MyLocalPlugin

	Launching and Debugging Your Plugin

	A more complex example: The Ruler Plugin

	Writing a Global Plugin

	A template: MyGlobalPlugin

	Writing Separately Installable Plugins

	Using the Basic Ginga Viewer Object in Python Programs
	Using the basic rendering class in new programs
	Graphics plotting with Ginga

	Rendering into Matplotlib Figures

	Rendering into HTML5 canvases

	Writing widget toolkit independent code

	Ginga Internals
	Introduction
	The Model

	The View

	The Controller

	Graphics on Ginga

	Miscellaneous Topics
	I want to use my own World Coordinate System!

	I want to use my own file storage format, not FITS!

	Porting Ginga to a New Widget Set

Introduction

About

Ginga is a toolkit designed for building viewers for scientific image
data in Python, visualizing 2D pixel data in numpy arrays.
The Ginga toolkit can view astronomical data such as contained in files based on the
FITS (Flexible Image Transport System) file format.

The Ginga toolkit is written and maintained by software engineers at the Subaru Telescope, National
Astronomical Observatory of Japan. The code is released as open-source under a BSD license and maintained at http://ejeschke.github.io/ginga/

Features

The Ginga toolkit centers around an image display widget that supports
zooming and panning, color and intensity mapping, a choice of several
automatic cut levels algorithms, and canvases for plotting scalable
geometric forms.

In addition to this widget, a general purpose
reference FITS viewer is provided, based on a plugin framework.
A relatively complete set of standard plugins are provided for features
that we expect from a modern FITS viewer: panning and zooming windows,
star catalog access, cuts, star pick/fwhm, thumbnails, etc.

Core Concepts

The Ginga reference viewer operation is organized around several basic concepts: workspaces, channels, plugins, modes.
Understanding these will greatly aid in using and modifying Ginga.

Workspaces

Ginga has a flexible workspace layout algorithm that allows customizing the appearance of the program. The majority
of the Ginga interface is constructed as hierarchical series of horizontally or
vertically-adjustable panels. Each panel is eventually a
workspace.
Each workspace is implemented by a GUI toolkit container widget such as
a notebook widget, where each item in the workspace is identified by a
tab.

However, workspaces can also take the form of a stack (like a tabbed
widget but with no tabs showing), or a Multiple Document Interface (MDI)
style container (subwindow desktop-style layout), or a grid layout.

Workspaces typically contain either a channel viewer, a plugin UI or
another workspace.
In its default configuration, Ginga starts up with a
single row (horizontal) panel of three workspaces, as shown in
the image below.

[image: ../_images/gingadefault.png]
The panel is sandwiched vertically between a menu bar and a status bar.
The left workspace is further subdivided into an upper and lower, and
there are also thin horizontal workspaces below the central workspace.
The central workspace is mainly used for viewers, while the other
workspaces hold the plugin UIs.

The initial layout of the workspaces is controlled by a
table in the Ginga startup script (see Customizing Ginga).
By changing this table the layout can be substantially altered.

Note

Note that workspaces may be implemented by several types of container widgets such as fixed position subwindows, sliding panes, MDI-style subwindows, etc.

A notebook widget is simply the most common (default) case.

Some workspaces can be converted dynamically between the different types.
If the workspace contains a workspace toolbar, the workspace type
selector can be used to change the type:

[image: ../_images/wstype_selector.png]
In the example shown below, we show a cutout of the main workspace
(tabbed), which has two tabs: a channel viewer (Image) and a second workspace (ws1).

The ws1 workspace is configured as type MDI and
has two windows: a viewer (Image0) and a third workspace (ws2). The
third workspace contains a grid of four viewers.
Depending on the the support of the back end widget set, tabs can be
dragged between workspaces (or out onto the desktop if you are
using the Gtk widget set), forming a new, detached workspace.

[image: ../_images/nested_workspaces.png]

Channels

Another core tenet of Ginga is that that image content is organized
into channels. A channel can be thought of as simply a named
category under which similar types of images might be organized. A few examples are:

	A channel for each type of instrument at a telescope

	A channel for each observation or calibration target

	Channels based on time or program or proposal identifier

If no channels are specified when Ginga starts up it simply creates a
default channel named Image. New channels can be created using the
Channel/Add channel menu item. Pressing the + button in the
workspace menu also adds a new channel using a default name.

A channel always has an image viewer associated with it, and may
additionally have a table viewer. The viewer is what you see in the active window representing that channel.

[image: ../_images/channels.png]
In the workspace toolbar, pressing - removes the currently selected
channel, while pressing the up or down arrows moves between images
in the selected channel.

In the case where multiple channels are present, they are usually visually
organized as tabs, windows, and grid within the central workspace of the
interface (as shown in the figure above) depending on how the workspace
is configured.
To change channels you simply click on the tab of the channel you want to
view, or press the left or right arrow buttons in the workspace menu.
There is also a channel selector in the plugin manager toolbar at
the bottom of the center pane. You can change the channel by using the drop-down menu or by simply
scrolling the mouse wheel on the control.

[image: ../_images/channel_selector.png]
Channels occupy a flat namespace, i.e., there is no hierarchy
in channel names.

By default, images are loaded into the same channel you are currently
viewing (unless your viewer has been customized to load images according to special rules).

Note

To keep images organized, simply change to the desired channel before opening a new image, or drag the image to the desired channel viewer.

Many preferences in Ginga are set on a per-channel basis.
Some per-channel settings include:

	Color distribution algorithm

	Color map

	Intensity map

	Cut levels

	Auto cut levels algorihm

	Transforms (flip, swap)

	Rotation

	WCS display coordinates

	Zoom algorithm

	Scale

	Interpolation type

	Pan position

A new channel will generally inherit the settings for the generic Image channel until new preferences are defined and saved.

If you create a new channel and had previously saved preferences for a channel with that name, the new channel will adopt those preferences.
Thus you can set up channels configured for certain telescopes or for types of data and easily reuse them in later sessions.

Another idea embodied in the channel concept is that the user should not have to manage memory usage too explicitly. Each channel has a setting that limits how many images it should keep in memory. If the number of images
exceeds the limit then Ginga will remove older images and load them back in as needed without user intervention.

Plugins

Almost all functionality in Ginga is achieved through the use of a plugin
architecture.

Plugins are quasi-independent Python modules that can
optionally have a Graphical User Interface. If they do have a GUI, it can be loaded at program startup or be dynamically opened and closed during the duration of the viewer’s execution.

Plugins can be global, in which case they don’t have any particular affiliation with a channel and
are generally invoked singularly, or local in which case they can be invoked in multiple instances–one per channel.

In this documentation we will also use the word operation to describe activating a plugin. For example, a “pick” operation would use the Pick
plugin.

Plugins are written as encapsulated Python modules
that are loaded dynamically when Ginga starts. There is an API for programming plugins (see Developing with Ginga).

The plugins are each described in more detail in
Plugins.

For those plugins that do have a visible interface, the Ginga startup script can map them to certain workspaces. By manipulating this mapping (and manipulating the workspace layout) we can customize to achieve flexible layouts.

In the image at the top, the left workspace contains three
global plugin UIs: the Info, Header and Zoom panes. The middle workspace
holds all the viewing panes for each channel. The right workspace has
the Dialogs, Thumbs, Contents and Error panes. The operation of these
plugins is described in Plugins.

Modes

Ginga provides a number of default bindings for key and pointer actions.
However, there are too many different actions to bind to a limited set of keys and pointer buttons.
Modes allow us to overcome this limitation.

Modes are a mechanism that allow Ginga to accommodate many key and pointer bindings for a large number of operations.

Modes are set on a per-channel basis. Pressing a particular
mode key in a channel viewer puts that viewer into that mode.

When in a mode, the behavior is that some special key, and the cursor and scroll bindings will override the default ones.
An adjacent viewer for a different channel may be in a different mode, or no mode.

Note

If a mode does not override a particular binding, the default one will still be active.

Modes have an associated mode type which can be set to one of:

	held: The mode is active while the activating key is held down

	oneshot: The mode is released by initiating and finishing a cursor drag,
or when Esc is pressed, if no cursor drag is performed

	locked: The mode is locked until the mode key is pressed again (or Esc)

	softlock: The mode is locked until another mode key is pressed (or Esc)

By default most modes are activated in “oneshot” type, unless the mode
lock is toggled. The mode lock is typically toggled in and out of
softlock by the l (lowercase letter l) key and “locked” with L.

Modes are usually indicated by a small black rectangle with the mode name in one corner of the viewer, usually in the lower right corner of the viewer.

Note

When the lock is active it is signified by an additional “[SL]” (softlock) or “[L]” (locked) appearing in the mode indicator.

[image: ../_images/mode_indicator.png]
In the above figure, you can see the mode indicator showing that
the viewer is in “contrast” mode, with the softlock on. The same
information can be seen in the Toolbar plugin. On the Toolbar plugin
you can click to set the mode and toggle the lock on/off.

General Operation

This chapter describes the general manipulations of images using Ginga.

For the most part these manipulations apply both to Ginga ImageView classes that can be embedded in a Python application, as well as to the reference viewer
distributed with Ginga.

Note

In cases where we are referring to something that is only available in the reference viewer these will be prefixed by the notation [RV].

Keyboard and mouse operations

In this documentation we will use the following terms to describe the operations performed with the mouse:

	Click or Left-click means to click on an item with
the left mouse button;

	Drag or Left-drag means to click, hold and drag with
the left mouse button;

	Scroll means to scroll with the middle mouse wheel or a trackpad/touchpad;

	Scroll-click means to click with the middle mouse wheel/button;

	Scroll-drag means to click, hold and drag with the middle
mouse wheel/button;

	Right-click means to click on an item with the right mouse
button;

	Right-drag means to click, hold and drag with the right
mouse button.

Mouse operations are also modified by the keyboard buttons Shift,
and Ctrl.

Shift-click means to press and hold the
Shift key while clicking with left mouse button.
Shift-right-click is the same using the right mouse button,
etc.

Some mouse-controlled operations in Ginga are initiated by a key stroke.
In these cases the key is pressed and released (not held), and then the
mouse is used to control the operation. Such operations are either
terminated by releasing the mouse button (if the operation employs a
drag), and clicking on the image or by pressing the Esc key (if not a
drag operation).

Note

We describe the standard key and mouse bindings here. However these bindings can be changed completely by the user. For more information on changing the bindings, see Section Rebinding Controls.

Loading a FITS image file

There are several ways to load a file into Ginga:

	Ginga supports drag-and-drop in a typical desktop environment, so
you can simply drag and drop files from a graphical file manager such
as the Mac Finder or Linux Nautilus onto a Ginga viewing pane to load an image.

	[RV] Another way is to invoke the FBrowser plugin, which opens in the
Dialogs tab. The plugin pane shows file and folder contents and allows
navigation up and down the filesystem hierarchy by double-clicking on
folder names. Simply navigate to the location of the FITS file and
double-click on the file name to load it, or drag it onto the image pane.

	[RV] Use the Load Image entry from the File [http://docs.h5py.org/en/latest/high/file.html#File] menu on the main menu bar at the top of the window. This opens a standard file dialog popup window where you can navigate to the file you wish to load.

Zooming and panning

The display object used throughout most of the Ginga panels has built-in support for zooming and panning. The Ginga Quick Reference has the
complete listing of default keyboard and mouse bindings.

For example:

	The scroll wheel of the mouse can be used to zoom in and out, along with the “+” and “-” keys.

	The backquote key will fit the image to the window.

	Digit keys (1, 2, etc.) will zoom in to the corresponding zoom level, while holding Shift and pressing a zoom key zooms out to the corresponding level.

When zoomed in, panning is enabled. Panning takes two forms:

	Proportional panning or “drag panning” pans the image in direct
proportion to the distance the mouse is moved. You can think of this
as dragging the image canvas in the direction you want to move it
under the window portal. To utilize a proportional pan, Ctrl-drag the
canvas, or press Space followed by “q” to go into pan mode, and then
drag the canvas.

2) Free panning allows scrolling around the entire image by mapping
the entire image boundaries to the window boundaries. For example,
moving the mouse to the upper right-hand corner of the window will pan to
the upper right hand corner of the image, etc. You can think of this
mode as moving the window portal around over the canvas.
To initiate a free pan, press Space followed by “w” to enter “freepan”
mode and then Scroll-drag to move around the window.

[RV] The Pan plugin (usually embedded under the Info tab) shows the
outline of the current pan position as a rectangle on a small version of
the whole image. Dragging this outline will also pan the image in the main
window. You can also click anywhere in the Pan window to set the pan
position, or right drag an outline to roughly specify the region to zoom
and pan to together.

Pan position

Panning in Ginga is based on an (X, Y) coordinate known as the
pan position. The pan position determines what Ginga will
try to keep in the middle of the window as the image is zoomed.

When zoomed out, you can Shift-click on a particular point in the image
(or press the “p” key while hovering over a spot),
setting the pan position. Zooming afterward will keep the pan
position in the center of the window. To reset the pan position to the
center of the image, press ‘c’.

Ginga has an auto zoom feature to automatically fit newly loaded images
to the window, similar to what happens when the backquote key is
pressed. See “Zoom Preferences” section in Preferences
for details.

How Ginga maps an image to color

The process of mapping a monochrome science image to color in Ginga involves four steps, in order:

	Applying the cut levels, which scales all values in the image to a specified range 1,

	Applying a color distribution algorithm, which distributes values within that range to indexes into a color map table, and

	Applying a shift map, which shifts and stretches or shrinks the values according to the user’s contrast adjustment 2, and finally,

	Applying an intensity map and color map to map the final output to RGB pixel values.

Setting cut levels

When visualizing pixel data with an arbitrary value range, the range is
first scaled into a limited range based on the low and high cut levels
defined in the view object. These cut levels can be set manually
by the user or automatically based on an algorithm. This eliminates the
effect of outlier pixel/flux values.

Manually setting cut levels

There are several ways to manually set the cut levels:

	Pressing Space followed by “s” key will put the viewer into
“cuts” mode. Here you can invoke a dual (high and low) interactive cut levels. Click and drag the mouse horizontally in the window to interactively set the high level, and vertically to set the low
level; and when you reach the desired levels, release the mouse
button. Scrolling the mouse wheel in this mode will also change the
low and high cut levels simultaneously–toward or away from each
other, resulting in lower or higher contrast.

	[RV] The “Cut Low” and “Cut High” boxes in the Info plugin panel
can be used. The current values are shown to the left; simply type a
new value in the corresponding box and press Enter or click the “Cut
Levels” button below. Cut values can also be set from the “Histogram”
plugin.

Automatically setting cut levels

Ginga can algorithmically estimate and set the cut levels–called auto (cut) levels. To activate the auto levels:

	Press the (“a”) key when the viewing widget has the focus.

	[RV] Click the “Auto Levels” button in the Info plugin panel.

[RV] The auto cut levels feature is controlled by several factors in the
preferences, including the choice of algorithm and some parameters to
the algorithm. See “Auto Cuts Preferences” section in
Preferences for details.

Ginga can also automatically set the cut levels for new images displayed in the view. See “New Image Preferences” section in Preferences for details.

Setting the color distribution algorithm

Ginga supports a number of color scale distribution algorithms, including:

	“linear”,

	“log”,

	“power”,

	“sqrt”,

	“squared”,

	“asinh”,

	“sinh”, and

	“histeq” (histogram equalization).

These can be sampled with the current color and intensity maps by
pressing Space followed by “d” key to go into “dist” mode, and then
scrolling the mouse, pressing the up/down keys, or the “b” and “n” keys.

Press Esc to exit the “dist” mode.

To reset to the default (“linear”) map, press “D” (capital D).

[RV] The color scale distribution algorithms can also be set from the
Preferences plugin, under the heading “Color Distribution”.

Making contrast adjustments

The value range can be shifted and stretched or squeezed to alter the
visibility and contrast of the image. This is sometimes called a
“bias/contrast” adjustment in other viewers.

In most Ginga configurations the shift map adjustment is bound to the
Ctrl-right drag combination (hold Ctrl down and right drag). Dragging
left/right shifts the map, and up/down stretches or shrinks the map.

You can also press “t” to enter “contrast” mode, where you can then use
a regular Left-drag.

Changing the color and intensity maps

The color and intensity maps control the final mapping of colors to the
values in the image.

Intensity Maps

Intensity maps are available to produce a final permutation on the value
range of the image before color is applied. The function of these
largely overlaps the function of the color distribution algorithm, so most
users will typically use either one or the other, but not both.

For example, the intensity map “log” essentially applies a log
distribution to the range. If this has already been done with the color
distribution “log”, the effect is doubly applied.

Possible values for the intensity map are:

	“equa”,

	“expo”,

	“gamma”,

	“jigsaw”,

	“lasritt”,

	“log”,

	“neg”,

	“neglog”,

	“null”, “ramp” and

	“stairs”.

“ramp” is the default value.

While in “cmap” mode (described below), the “j” and “k” keys can be used
to cycle through the intensity maps.

Color Maps

To change color maps from the keyboard shortcuts, press Space followed
by “y” to go into “cmap” mode. While in “cmap” mode you can change color
maps by scrolling the mouse, pressing the up/down keys, or the “b” and
“n” keys.

While in “cmap” mode, pressing “I” (uppercase) will invert the current
color map. Press Esc to exit cmap mode.

Note

Setting a new color map will cancel the color map inversion. Some color maps are available in both regular and inverted forms. If selecting an already inverted (aka “reversed”) color map it is not necessary to explicitly invert it.

While many color maps are available built in, users can also define their own color maps or use matplotlib color maps, if the matplotlib package is installed.

[RV] The ColorMapPicker global plugin is useful you to visualize all of the colormaps and apply one to the currently active channel viewer.

Transforming the image view

Ginga provides several controls for transforming the image view. The image can be flipped in the X axis (“horizontally”), Y axis
(“vertically”), have the X and Y axes swapped, or any combination
thereof. These operations can be done by keyboard shortcuts:

	Press “[” to flip in X, “{” to restore.

	Press “]” to flip in Y, “}” to restore.

	Press “” to swap X and Y axes, “|” to restore.

The image can also be rotated in arbitrary amounts.

An interactive rotate operation can be initiated by pressing Space
follwed by “r” in the image and then dragging the mouse horizontally
left or right to set the angle. Press “R” (Shift+R) to restore the
angle to 0 (unrotated).

Note

It is less computationally-intensive to rotate the image using the simple transforms (flip, swap) than by the rotation feature. Rotation may slow down some viewing operations.

[RV] The image can also be transformed in the channel
Preferences (see “Transform Preferences”) which has
checkboxes for flip X, flip Y, swap XY and a box for rotation by degrees.

Footnotes

	1

	Some image viewers or graphing programs use the term “limits” for what we call “cut levels”.

	2

	What some programs call a “contrast/bias” adjustment.

Ginga Canvas Graphics

This chapter describes the basic architecture of Ginga’s
canvas-viewer-renderer model, and describes how to do graphics
operations on canvases.

Canvases and Canvas Objects

Ginga’s canvas is based on the DrawingCanvas class.
On the canvas can be placed a number of different kinds of
canvas objects, including many geometric shapes. The set of canvas
objects includes:

	Text: a piece of text having a single point coordinate.

	Polygon: a closed polygon defined by N points.

	Path: an open polygon defined by N points.

	Box: a rectangular shape defined by a single center point,
two radii and a rotation angle.

	Ellipse: an elliptical shape defined by a single center point,
two radii and a rotation angle.

	Triangle: an equilateral triangular shape defined by a single
center point, two radii and a rotation angle.

	Circle: a circular shape defined by a center point and a radius.

	Point: a marker for a point defined by a single point and a
radius for the “arms”.

	Rectangle – a rectangular shape defined by two points.

	Line – a line defined by two points.

	RightTriangle – a right triangle defined by two points.

	Compass – a compass defined by a point and a radius.

	Ruler – a ruler defined by two points.

	Crosshair – a crosshair defined by one point.

	Annulus – an annulus defined by one point and two radii.

	Image – a raster image anchored by a point.

	NormImage – a subclass of Image, with rendering done with the
aid of a colormap, a color distribution algorithm (linear, log, etc),
and defined low and high cut levels.

	CompoundObject: a compound object combining a series of other
canvas objects.

	Canvas: a transparent subcanvas on which items can be placed.

	DrawingCanvas: Like a Canvas, but also can support manual
drawing operations initiated in a viewer to create shapes on itself.

	ColorBar: a bar with a color range and ticks and value markers to
help indicate the mapping of color to the value range of the data.

	ModeIndicator: a small rectangular overlay with text indicating
that the user has entered a special keyboard/mouse mode.

All canvas objects are subclasses of CanvasObjectBase and may also
contain mixin classes that define common attributes or behavior. For
example, Line, Ruler and RightTriangle are all subclasses of
the mixin class TwoPointMixin.

Note

In most general canvas systems you can layer objects in any
order. In Ginga there is an optimization of canvas redrawing
that merges image bitmaps before updating other kinds of
canvas objects. This means that while images can be stacked in
any order, effectively you cannot have other objects
appear underneath image objects. For most uses of the
viewer this is not a big limitation.

Viewers

All Ginga viewers are subclasses of ImageViewBase. These objects
implement a viewport onto a DrawingCanvas object. Each viewer
contains a handle to a canvas and provides a particular view onto that
canvas defined by:

	dimensions of their viewport (i.e. the height and
width of the native widget’s window into which the viewer is rendering),

	scale in X and Y dimensions,

	a pan position linking the center of the viewport to a canvas
coordinate,

	a transform consisting of possible flips in X, Y axes and/or swapping
of X/Y axes, and

	a rotation.

Two different ImageView-based viewers can share the same canvas
handle, providing different views into the same canvas. Another typical
arrangement for sharing is where each viewer has a private canvas, and
on each private canvas is placed a shared transparent subcanvas, an
arrangement which allows each viewer to have a mix of private and shared
canvas objects. Another common idiom is to layer multiple
DrawingCanvas objects to more easily manage multiple collections of
overlaid graphics.

The various subclasses of ImageView are designed to render into a
different widget set’s “native” canvas using a CanvasRenderer
customized for that target.

Plugins

Ginga is written so that most of the functionality of the program is
achieved through the use of plugins. This modular approach allows a
large degree of flexibility and customization, as well as making overall
design and maintenance of the program simpler.

Plugins are divided into two types: global and local.
A global plugin has a single instance shared by all channels, while a
local plugin creates a unique instance for each channel. If you switch
channels, a global plugin will respond to the change by updating itself,
while a local plugin will remain unchanged if the channel is switched,
because its operation is specific to a given channel. (Ginga’s concept
of channels is discussed in Channels.)

This chapter describes the set of plugins that come with Ginga. Those
interested in writing their own custom plugins should refer to
Writing a Global Plugin or Anatomy of a Local Ginga Plugin.

Global plugins

	Toolbar

	Pan

	Info

	Header

	Zoom

	Thumbs

	Contents

	Colorbar

	Cursor

	Operations

	WBrowser

	FBrowser (Open File)

	ColorMapPicker

	Errors

	RC

	WCSMatch

	ChangeHistory

	SAMP Control

	Log

	Command

	SaveImage (Save File)

Local plugins

An operation is the activation of a local plugin to perform some
function. The plugin manager toolbar at the bottom of the center pane
is the graphical way to start an operation.

	Pick

	Ruler

	MultiDim

	Cuts

	Histogram

	Crosshair

	Overlays

	WCSAxes

	TVMark

	TVMask

	Blink

	LineProfile

	PixTable

	Preferences

	Catalogs

	Mosaic

	Drawing

	FBrowser

	Compose

	PlotTable

	Pipeline

	ScreenShot

Toolbar

Toolbar provides a set of convenience UI controls for common operations
on viewers.

Plugin Type: Global

Toolbar is a global plugin. Only one instance can be opened.

Usage

Hovering over an icon on the toolbar should provide you with usage tool tip.

It is customizable using ~/.ginga/plugin_Toolbar.cfg, where ~
is your HOME directory:

#
Toolbar plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Toolbar.cfg"

Accepted value: 'oneshot' or 'locked'
mode_type = 'oneshot'

Pan

[image: Pan plugin]
The Pan plugin provides a small panning image that gives an overall
“birds-eye” view of the channel image that last had the focus. If the
channel image is zoomed in 2X or greater, then the pan region is shown
graphically in the Pan image by a rectangle.

Plugin Type: Global

Pan is a global plugin. Only one instance can be opened.

Usage

The channel image can be panned by clicking and/or dragging to place
the rectangle. Using the right mouse button to drag a rectangle will
force the channel image viewer to try to match the region (taking into
account the differences in the aspect ratio between the drawn rectangle
and the window dimensions). Scrolling in the Pan image will zoom the
channel image.

The color/intensity map and cut levels of the Pan image are updated
when they are changed in the corresponding channel image.
The Pan image also displays the World Coordinate System (WCS) compass, if
valid WCS metadata is present in the FITS HDU being viewed in the
channel.

The Pan plugin usually appears as a sub-pane under the “Info” tab, next
to the Info plugin.

It is customizable using ~/.ginga/plugin_Pan.cfg, where ~
is your HOME directory:

#
Pan plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pan.cfg"

Share a canvas with the channel viewer
use_shared_canvas = False

color of pan position marker
pan_position_color = 'yellow'

color of pan rectangle
pan_rectangle_color = 'red'

color of compass
compass_color = 'skyblue'

rotate the pan image if the main image is rotated?
rotate_pan_image = True

Info

[image: ../../_images/info-plugin.png]
The Info plugin provides a pane of commonly useful metadata about the
associated channel image. Common information includes some metadata
header values, coordinates, dimensions of the image, minimum and
maximum values, etc. As the cursor is moved around the image, the X, Y,
Value, RA, and DEC values are updated to reflect the value under the cursor.

Plugin Type: Global

Info is a global plugin. Only one instance can be opened.

Usage

At the bottom of the Info interface the cut levels controls. Here
the low and high cut levels are shown and can be adjusted. Pressing the
“Auto Levels” button will recalculate cut levels based on the current
auto cut levels algorithm and parameters defined in the channel
preferences.

Below the “Auto Levels” button, the status of the settings for
“Cut New”, “Zoom New”, and “Center New” are shown for the currently active
channel. These indicate how new images that are added to the channel
will be affected by auto cut levels, fitting to the window and panning
to the center of the image.

The “Follow New” checkbox controls whether the viewer will automatically
display new images added to the channel. The “Raise New” checkbox controls
whether an image viewer window is raised when a new image is added. These
two controls can be useful, for example, if an external program is adding
images to the viewer, and you wish to prevent interruption of your work
examining a particular image.

As a global plugin, Info responds to a change of focus to a new channel
by displaying the metadata from the new channel.
It typically appears under the “Synopsis” tab in the user interface.

Header

[image: Header plugin]
The Header plugin provides a listing of the metadata associated with the
image.

Plugin Type: Global

Header is a global plugin. Only one instance can be opened.

Usage

The Header plugin shows the FITS keyword metadata from the image.
Initially only the Primary HDU metadata is shown. However, in
conjunction with the MultiDim plugin, the metadata for other HDUs will be
shown. See MultiDim for details.

If the “Sortable” checkbox has been checked in the lower left of the UI,
then clicking on a column header will sort the table by values in that
column, which may be useful for quickly locating a particular keyword.

If the “Include primary header” checkbox toggles the inclusion of the
primary HDU keywords or not. This option may be disabled if the image
was created with an option not to save the primary header.

It is customizable using ~/.ginga/plugin_Header.cfg, where ~
is your HOME directory:

#
Header plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Header.cfg"

Sort header
sortable = True

Include primary header in table output
include_primary_header = False

If True, color every other row in alternating shades to improve
readability of long tables
color_alternate_rows = True

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

Zoom

[image: Zoom plugin]
The Zoom plugin shows an enlarged image of a cutout region centered
under the cursor position in the associated channel image. As the
cursor is moved around the image, the zoom image updates to allow close
inspection of the pixels or precise control in conjunction with other
plugin operations.

Plugin Type: Global

Zoom is a global plugin. Only one instance can be opened.

Usage

The size of the cutout radius can be adjusted by the slider below the
zoom image labeled “Zoom Radius”. The default radius is 30 pixels,
making a 61x61 zoom image. The magnification can be changed by
adjusting the “Zoom Amount” slider.

Two modes of operation are possible – absolute and relative zoom:

	In absolute mode, the zoom amount controls exactly the zoom level
shown in the cutout; For example, the channel image may be zoomed into
10X, but the zoom image will only show a 3X image if the zoom amount
is set to 3X.

	In relative mode, the zoom amount setting is interpreted as relative
to the zoom setting of the channel image. If the zoom amount is set
to 3X and the channel image is zoomed to 10X then the zoom image shown
will be 13X (10X + 3X). Note that the zoom amount setting can be < 1,
so a setting of 1/3X with a 3X zoom in the channel image will produce
a 1X zoom image.

The “Refresh Interval” setting controls how quickly the Zoom plugin
responds to the movement of the cursor in updating the zoom image. The
value is specified in milliseconds.

Tip

Usually setting a small refresh interval improves the overall
responsiveness of the zoom image, and the default value of 20 is
a reasonable one. You can experiment with the value if the zoom
image seems too jerky or out of sync with the mouse movement in
the channel image window.

The “Defaults” button restores the default settings of the controls.

It is customizable using ~/.ginga/plugin_Zoom.cfg, where ~
is your HOME directory:

#
Zoom plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Zoom.cfg"

default zoom radius in pixels
zoom_radius = 30

default zoom level
zoom_amount = 3

refresh interval (sec)
NOTE: usually a small delay speeds things up
refresh_interval = 0.02

rotate the zoom image if the channel image is rotated?
rotate_zoom_image = True

use a different color map than channel image?
zoom_cmap_name = None

use a different intensity map than channel image?
zoom_imap_name = None

Thumbs

[image: Thumbs plugin]
The Thumbs plugin provides a thumbnail index of all images viewed since
the program was started.

Plugin Type: Global

Thumbs is a global plugin. Only one instance can be opened.

Usage

By default, Thumbs appear in cronological viewing history,
with the newest images at the bottom and the oldest at the top.
The sorting can be made alphanumeric by a setting in the
“plugin_Thumbs.cfg” configuration file.

Clicking on a thumbnail navigates you directly to that image in the
associated channel. Hovering the cursor over a thumbnail will show a
tool tip that contains a couple of useful pieces of metadata from the
image.

The “Auto Scroll” checkbox, if checked, will cause the Thumbs pan to
scroll to the active image.

It is customizable using ~/.ginga/plugin_Thumbs.cfg, where ~
is your HOME directory:

#
Thumbs plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Thumbs.cfg"

If you revisit the same directories frequently
caching thumbs saves a lot of time when they need to be regenerated
cache_thumbs = False

cache location-- "local" puts them in a .thumbs subfolder, otherwise
they are cached in ~/.ginga/thumbs
cache_location = 'local'

Scroll the pane automatically when new thumbnails arrive
auto_scroll = True

Keywords to extract and show if we mouse over the thumbnail
tt_keywords = ['OBJECT', 'FRAMEID', 'UT', 'DATE-OBS']

Mandatory unique image identifier in tooltip
mouseover_name_key = 'NAME'

How many seconds to wait after an image is altered to begin trying
to rebuild a matching thumb. Usually a few seconds is good in case
there is ongoing adjustment of the image
rebuild_wait = 0.5

Max length of thumb on the long side
thumb_length = 180

Separation between thumbs in pixels
thumb_hsep = 15
thumb_vsep = 15

Sort the thumbs alphabetically: 'alpha' or None
sort_order = None

Thumbnail label length in num of characters (None = no limit)
label_length = 25

Cut off long label ('left', 'right', or None)
label_cutoff = 'right'

Option to highlight images that are displayed in channels.
If set to True this option will only highlight the image that is in the
channel with the keyboard focus
highlight_tracks_keyboard_focus = True

Highlighted label colors
label_bg_color = 'lightgreen'
label_font_color = 'white'

label_font_size = 10

Load visible thumbs in the background to replace placeholder icons
autoload_visible_thumbs = True

Length of time to wait after scrolling to begin autoloading
autoload_interval = 1.0

list of attributes to transfer from the channel viewer to the
thumbnail generator if the channel has an image in it
transfer_attrs = ['transforms', 'cutlevels', 'rgbmap']

Contents

[image: Contents plugin]
The Contents plugin provides a table of contents-like interface for all
the images viewed since the program was started. Unlike Thumbs,
Contents is sorted by channel. The contents also shows some configurable
metadata from the image.

Plugin Type: Global

Contents is a global plugin. Only one instance can be opened.

Usage

Click on a column heading to sort the table by that column;
Click again to sort the other way.

Note

The columns and their values are drawn from the FITS header,
if applicable.
This can be customized by setting the “columns” parameter in
the “plugin_Contents.cfg” settings file.

The active image in the currently focused channel will normally be
highlighted. Double-click on an image will force that image to be
shown in the associated channel. Single-click on any image to
activate the buttons at the bottom of the UI:

	“Display”: Make the image the active image.

	“Move”: Move the image to another channel.

	“Copy”: Copy the image to another channel.

	“Remove”: Remove the image from the channel.

If “Move” or “Copy” is done on an image that has been modified in Ginga
(which would have an entry under ChangeHistory, if used), the
modification history will be retained as well. Removing an image from
a channel destroys any unsaved changes.

It is customizable using ~/.ginga/plugin_Contents.cfg, where ~
is your HOME directory:

#
Contents plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Contents.cfg"

columns to show from metadata -- NAME and MODIFIED recommended
format: [(col header, keyword1), ...]
columns = [('Name', 'NAME'), ('Object', 'OBJECT'), ('Filter', 'FILTER01'), ('Date', 'DATE-OBS'), ('Time UT', 'UT'), ('Modified', 'MODIFIED')]

If set to True, will always expand the tree in Contents when new entries are added
always_expand = True

Option to highlight images that are displayed in channels.
If set to True this option will only highlight the image that is in the
channel with the keyboard focus
highlight_tracks_keyboard_focus = False

If True, color every other row in alternating shades to improve
readability of long tables
color_alternate_rows = True

Highlighted row colors (in addition to bold text)
row_font_color = 'green'

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 100

Colorbar

[image: Colorbar plugin]
The Colorbar plugin shows a colorbar indicating the colormap applied
to the image and showing the example values along the range.

Plugin Type: Global

Colorbar is a global plugin. Only one instance can be opened.

Usage

Clicking and dragging in the Colorbar window will shift the colormap
left or right. Scrolling will stretch or shrink the colormap at the
cursor position. Right-clicking will restore the colormap from any
shift or stretch.

If the focus shifts to another channel, the colorbar will be updated
to reflect that channel’s colormap and value information.

It is customizable using ~/.ginga/plugin_Colorbar.cfg, where ~
is your HOME directory:

#
Colorbar plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Colorbar.cfg"

Set colorbar height, if default is too big or little
cbar_height = 36

size of font used in the color bar
fontsize = 10

Cursor

[image: Cursor plugin]
The Cursor plugin displays a summary line of text that changes as the
user moves the cursor around an image. In the standard reference viewer
configuration, it appears as a line containing green text just below the
Colorbar plugin.

Plugin Type: Global

Cursor is a global plugin. Only one instance can be opened.

Usage

Cursor simply tracks the cursor as it moves around an image and displays
information about the pixel coordinates, WCS coordinates (if available)
and the value of the pixel under the cursor.

There is no associated configuration GUI.

Note

Pixel coordinates are affected by the general setting
“pixel_coords_offset” which can be set in the “general.cfg”
configuration file for ginga. The default is value for this
setting is 1.0, which means pixel coordinates are reported
from an origin of 1, as per the FITS standard.

It is customizable using ~/.ginga/plugin_Cursor.cfg, where ~
is your HOME directory:

#
Cursor plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Cursor.cfg"

share_readout = True

Operations

This plugin defines the GUI for managing local plugins, a.k.a., “operations”.

Plugin Type: Global

Operations is a global plugin. Only one instance can be opened.

Usage

The Operations plugin acts as a visual interface to the reference viewer
plugin manager. With this plugin, you can change the active channel,
start, stop, or unfocus a local plugin on a channel, and see which local
plugins are running.

Note

By replacing or subclassing this plugin, you can customize the way
the reference viewer starts and manages operations.

It is customizable using ~/.ginga/plugin_Operations.cfg, where ~
is your HOME directory:

#
Operations plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Operations.cfg"

Show the change channel drop-down control
show_channel_control = True

Color to highlight focused plugins in the operations control tray
focuscolor = "lightgreen"

Change to False to use combobox+button launch approach
use_popup_menu = True

WBrowser

Web browser plugin for Ginga.

Plugin Type: Global

WBrowser is a global plugin. Only one instance can be opened.

Usage

This global plugin is used to browse help pages for Ginga.

When a “Help” button is pressed from a plugin (e.g., Pick),
Ginga will attempt to download an existing documentation build
from ReadTheDocs for the matching version. If successful,
plugin documentation from that download is displayed.
If not successful or deliberately disabled in “plugin_WBrowser.cfg”,
Ginga will render the plugin’s docstring locally.

It is customizable using ~/.ginga/plugin_WBrowser.cfg, where ~
is your HOME directory:

#
WBrowser plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_WBrowser.cfg"

Set to True to force offline doc browsing, otherwise download from RTD
offline_doc_only = False

FBrowser (Open File)

This brings up FBrowser local plugin from the global menu
for convenience.

ColorMapPicker

[image: ColorMapPicker plugin]
The ColorMapPicker plugin is used to graphically browse and select a
colormap for a channel image viewer.

Plugin Type: Global

ColorMapPicker is a global plugin. Only one instance can be opened.

Usage

Operation of the plugin is very simple: the colormaps are displayed in
the form of colorbars and labels in the main view pane of the plugin.
Click on any one of the bars to set the colormap of the currently
active channel in the viewer.

Change the channel to set the colormap on a different channel.

You can scroll vertically or use the scroll bars to move through the
colorbar samples.

Note

When the plugin starts for the first time, it will generate
a bitmap RGB image of colorbars and labels corresponding to
all the available colormaps. This can take a few seconds
depending on the number of colormaps installed.

Colormaps are shown with the “ramp” intensity map applied.

It is customizable using ~/.ginga/plugin_ColorMapPicker.cfg, where ~
is your HOME directory:

#
ColorMapPicker plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_ColorMapPicker.cfg"

cbar_ht = 20
cbar_wd = 300
cbar_sep = 10
cbar_pan_accel = 1.0

Errors

The Errors plugin reports error messages on the viewer.

Plugin Type: Global

Errors is a global plugin. Only one instance can be opened.

Usage

When an error occurs in Ginga, its message may be reported here.

RC

The RC plugin implements a remote control interface for the Ginga
viewer.

Plugin Type: Global

RC is a global plugin. Only one instance can be opened.

Usage

The RC (Remote Control) plugin provides a way to control Ginga remotely
through the use of an XML-RPC interface. Start the plugin from the
“Plugins” menu (invoke “Start RC”) or launch ginga with the --modules=RC
command line option to start it automatically.

By default, the plugin starts up with server running on port 9000 bound
to the localhost interface – this allows connections only from the local
host. If you want to change this, set the host and port in the “Set
Addr” control and press Enter – you should see the address update in the
“Addr:” display field.

Please note that the host part (before the colon) does not indicate
which host you want to allow access from, but to which interface to
bind. If you want to allow any host to connect, leave it blank (but
include the colon and port number) to allow the server to bind on all
interfaces. Press “Restart” to then restart the server at the new
address.

Once the plugin is started, you can use the ggrc script (included when
ginga is installed) to control Ginga. Take a look at the script if you
want to see how to write your own programmatic interface.

Show example usage:

$ ggrc help

Show help for a specific Ginga method:

$ ggrc help ginga <method>

Show help for a specific channel method:

$ ggrc help channel <chname> <method>

Ginga (viewer shell) methods can be called like this:

$ ggrc ginga <method> <arg1> <arg2> ...

Per-channel methods can be called like this:

$ ggrc channel <chname> <method> <arg1> <arg2> ...

Calls can be made from a remote host by adding the options:

--host=<hostname> --port=9000

(In the plugin GUI, be sure to remove the “localhost” prefix
from the “addr”, but leave the colon and port.)

Examples

Create a new channel:

$ ggrc ginga add_channel FOO

Load a file:

$ ggrc ginga load_file /home/eric/testdata/SPCAM/SUPA01118797.fits

Load a file into a specific channel:

$ ggrc ginga load_file /home/eric/testdata/SPCAM/SUPA01118797.fits FOO

Cut levels:

$ ggrc channel FOO cut_levels 163 1300

Auto cut levels:

$ ggrc channel FOO auto_levels

Zoom to a specific level:

$ ggrc -- channel FOO zoom_to -7

(Note the use of -- to allow us to pass a parameter beginning with -.)

Zoom to fit:

$ ggrc channel FOO zoom_fit

Transform (arguments are a boolean triplet: flipx flipy swapxy):

$ ggrc channel FOO transform 1 0 1

Rotate:

$ ggrc channel FOO rotate 37.5

Change colormap:

$ ggrc channel FOO set_color_map rainbow3

Change color distribution algorithm:

$ ggrc channel FOO set_color_algorithm log

Change intensity map:

$ ggrc channel FOO set_intensity_map neg

In some cases, you may need to resort to shell escapes to be able to
pass certain characters to Ginga. For example, a leading dash character is
usually interpreted as a program option. In order to pass a signed
integer, you may need to do something like:

$ ggrc -- channel FOO zoom -7

Interfacing from within Python

It is also possible to control Ginga in RC mode from within Python.
The following describes some of the functionality.

Connecting

First, launch Ginga and start the RC plugin.
This can be done from the command line:

ginga --modules=RC

From within Python, connect with a RemoteClient object as
follows:

from ginga.util import grc
host='localhost'
port=9000
viewer = grc.RemoteClient(host, port)

This viewer object is now linked to the Ginga using RC.

Load an Image

You can load an image from memory in a channel of
your choosing. First, connect to a channel:

ch = viewer.channel('Image')

Then, load a Numpy image (i.e., any 2D ndarray):

import numpy as np
img = np.random.rand(500, 500) * 10000.0
ch.load_np('Image_Name', img, 'fits', {})

The image will display in Ginga and can be manipulated
as usual.

Overlay a Canvas Object

It is possible to add objects to the canvas in a given
channel. First, connect:

canvas = viewer.canvas('Image')

This connects to the channel named “Image”. You can
clear the objects drawn in the canvas:

canvas.clear()

You can also add any basic canvas object. The key issue to keep in
mind is that the objects input must pass through the XMLRC
protocol. This means simple data types (float, int, list,
or str); No arrays. Here is an example to plot a line through a series
of points defined by two Numpy arrays:

x = np.arange(100)
y = np.sqrt(x)
points = list(zip(x.tolist(), y.tolist()))
canvas.add('path', points, color='red')

This will draw a red line on the image.

WCSMatch

[image: WCSMatch plugin]
WCSMatch is a global plugin for the Ginga image viewer that allows
you to roughly align images with different scales and orientations
using the images’ World Coordinate System (WCS) for viewing purposes.

Plugin Type: Global

WCSMatch is a global plugin. Only one instance can be opened.

Usage

To use, simply start the plugin, and from the plugin GUI select a
channel from the drop-down menu labeled “Reference Channel”. The
image contained in that channel will be used as a reference for
synchronizing the images in the other channels.

The channels will be synchronized in viewing (pan, scale (zoom),
transforms (flips) and rotation. The checkboxes “Match Pan”,
“Match Scale”, “Match Transforms” and “Match Rotation” can be
checked or not to control which attributes are synchronized between
channels.

To completely “unlock” the synchronization, simply select “None”
from the “Reference Channel” drop-down menu.

Currently, there is no way to limit the channels that are affected
by the plugin.

ChangeHistory

[image: ChangeHistory plugin]
Keep track of buffer change history.

Plugin Type: Global

ChangeHistory is a global plugin. Only one instance can be opened.

This plugin is used to log any changes to data buffer. For example,
a change log would appear here if a new image is added to a mosaic via the
Mosaic plugin. Like Contents,
the log is sorted by channel, and then by image name.

Usage

History should stay no matter what channel or image is active.
New history can be added, but old history cannot be deleted,
unless the image/channel itself is deleted.

The redo() method picks up an 'add-image-info' event and displays
related metadata here. The metadata is obtained as follows:

channel = self.fv.get_channel_info(chname)
iminfo = channel.get_image_info(imname)
timestamp = iminfo.time_modified
description = iminfo.reason_modified # Optional

Both 'time_modified' and 'reason_modified' have to be explicitly set
by the calling plugin in the same method that issues the
'add-image-info' callback, like this:

This changes the data buffer
image.set_data(new_data, ...)
Add description for ChangeHistory
info = dict(time_modified=datetime.utcnow(),
 reason_modified='Data has changed')
self.fv.update_image_info(image, info)

It is customizable using ~/.ginga/plugin_ChangeHistory.cfg, where ~
is your HOME directory:

#
ChangeHistory plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_ChangeHistory.cfg"

If set to True, will always expand the tree in ChangeHistory when
new entries are added
always_expand = True

If set to True, rows will have alternate colors
color_alternate_rows = True

Timestamp column width
ts_colwidth = 250

SAMP Control

[image: SAMP plugin]
The SAMP plugin implements a SAMP interface for the Ginga reference
viewer.

Note

To run this plugin, you need to install astropy that has the
samp module.

Plugin Type: Global

SAMP is a global plugin. Only one instance can be opened.

Usage

Ginga includes a plugin for enabling SAMP (Simple Applications Messaging
Protocol) support. With SAMP support, Ginga can be controlled and
interoperate with other astronomical desktop applications.

The SAMP module is not started by default. To start it when Ginga
starts, specify the command line option:

--modules=SAMP

Otherwise, start it using “Start SAMP” from the “Plugins” menu.

Currently, SAMP support is limited to image.load.fits messages,
meaning that Ginga will load a FITS file if it receives one of these
messages.

Ginga’s SAMP plugin uses the astropy.samp module, so you will need to
have astropy installed to use the plugin. By default, Ginga’s SAMP
plugin will attempt to start a SAMP hub if one is not found running.

It is customizable using ~/.ginga/plugin_SAMP.cfg, where ~
is your HOME directory:

#
SAMP plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_SAMP.cfg"

SAMP_channel = 'Image'

Default location is set by Ginga's viewer.
#cache_location = '/my/cache/path/'

default_connect = True

start_hub = True

Log

[image: Log plugin]
See the logging output of the reference viewer.

Plugin Type: Global

Log is a global plugin. Only one instance can be opened.

Usage

The Log plugin builds a UI that includes a large scrolling text widget
showing the active output of the logger. The latest output shows up at
the bottom. This can be useful for troubleshooting problems.

There are four controls:

	The combo box on the lower left allows you to choose the level of
logging desired. The four levels, in order of verbosity are: “debug”,
“info”, “warn”, and “error”.

	The box with the number on the lower right allows you to set how many
lines of input to keep in the display buffer (e.g., keep only the last
1000 lines).

	The checkbox “Auto scroll”, if checked, will cause the large text
widget to scroll to the end as new log messages are added. Uncheck
this if you want to peruse the older messages and study them.

	The “Clear” button is used to clear the text widget, so that only new
logging shows up.

Command

This plugin provides a command line interface to the reference viewer.

Note

The command line is for use within the plugin UI.
If you are looking for a remote command line interface,
please see the RC plugin.

Plugin Type: Global

Command is a global plugin. Only one instance can be opened.

Usage

Get a list of commands and parameters:

g> help

Execute a shell command:

g> !cmd arg arg ...

Notes

An especially powerful tool is to use the reload_local and
reload_global commands to reload a plugin when you are developing
that plugin. This avoids having to restart the reference viewer and
laboriously reload data, etc. Simply close the plugin, execute the
appropriate “reload” command (see the help!) and then start the plugin
again.

Note

If you have modifed modules other than the plugin itself,
these will not be reloaded by these commands.

SaveImage (Save File)

[image: SaveImage plugin]
Save images to output files.

Plugin Type: Global

SaveImage is a global plugin. Only one instance can be opened.

Usage

This global plugin is used to save any changes made in Ginga back to output
images. For example, a mosaic image that was created by the Mosaic
plugin. Currently, only FITS images (single or multiple extensions) are
supported.

Given the output directory (e.g., /mypath/outputs/), a suffix
(e.g., ginga), an image channel (Image), and a selected image
(e.g., image1.fits), the output file will be
/mypath/outputs/image1_ginga_Image.fits. Inclusion of the channel name is
optional and can be omitted using plugin configuration file,
plugin_SaveImage.cfg.
The modified extension(s) will have new header or data extracted from
Ginga, while those not modified will remain untouched. Relevant change
log entries from the ChangeHistory global plugin will be inserted into
the history of its PRIMARY header.

Note

This plugin uses the module astropy.io.fits to write the output
images, regardless of what is chosen for FITSpkg in the
general.cfg configuration file.

It is customizable using ~/.ginga/plugin_SaveImage.cfg, where ~
is your HOME directory:

#
SaveImage plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_SaveImage.cfg"

Default output parameters. Can also be changed in the GUI.
output_directory = '.'
output_suffix = 'ginga'

Include channel name in the suffix.
If False, only output_suffix is used regardless of channel.
include_chname = True

Clobber existing output files or not
clobber = False

Only list modified images from the channel
modified_only = True

Maximum mosaic size to allow for writing out.
This is useful to prevent super large mosaic from being written.
Default is 10k x 10k
max_mosaic_size = 1e8

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

Pick

[image: Pick plugin]
Perform quick astronomical stellar analysis.

Plugin Type: Local

Pick is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

The Pick plugin is used to perform quick astronomical data quality analysis
on stellar objects. It locates stellar candidates within a drawn rectangle
and picks the most likely candidate based on a set of search settings.
The Full Width Half Max (FWHM) is reported on the candidate object, as
well as its size based on the plate scale of the detector. Rough
measurement of background, sky level and brightness is also done.

Defining the pick area

The default pick area is defined as a rectangle of approximately 30x30
pixels that encloses the search area.

The move/draw/edit selector at the bottom of the plugin is used to
determine what operation is being done to the pick area:

[image: Move, Draw and Edit buttons]
“Move”, “Draw”, and “Edit” buttons.

	If “move” is selected, then you can move the existing pick area by
dragging it or clicking where you want the center of it placed.
If there is no existing area, a default one will be created.

	If “draw” is selected, then you can draw a shape with the cursor
to enclose and define a new pick area. The default shape is a
rectangle, but other shapes can be selected in the “Settings” tab.

	If “edit” is selected, then you can edit the pick area by dragging its
control points, or moving it by dragging in the bounding box.

After the area is moved, drawn or edited, Pick will perform one of three
actions:

	In “Quick Mode” ON, with “From Peak” OFF, it will simply attempt to
perform a calculation based on the coordinate under the crosshair in
the center of the pick area.

	In “Quick Mode” ON, with “From Peak” ON, it will perform a quick
detection of peaks in the pick area and perform a calculation on the
first one found, using the peak’s coordinates.

	In “Quick Mode” OFF, it will search the area for all peaks and
evaluate the peaks based on the criteria in the “Settings” tab of the UI
(see “The Settings Tab” below) and try to locate the best candidate
matching the settings.

If a candidate is found

The candidate will be marked with a point (usually an “X”) in the
channel viewer canvas, centered on the object as determined by the
horizontal and vertical FWHM measurements.

The top set of tabs in the UI will be populated as follows:

[image: Image tab of Pick area]
“Image” tab of Pick area.

The “Image” tab will show the contents of the cutout area.
The widget in this tab is a Ginga widget and so can be zoomed and panned
with the usual keyboard and mouse bindings (e.g., scroll wheel). It will
also be marked with a point centered on the object and additionally the
pan position will be set to the found center.

[image: Contour tab of Pick area]
“Contour” tab of Pick area.

The “Contour” tab will show a contour plot.
This is a contour plot of the area immediately surrounding the
candidate, and not usually encompassing the entire region of the pick
area. You can use the vertical slider to the right of the plot to
increase or decrease the area of the contour plot.

[image: FWHM tab of Pick area]
“FWHM” tab of Pick area.

The “FWHM” tab will show a FWHM plot.
The blue lines show measurements in the X direction and the green lines
show measurements in the Y direction. The solid lines indicate actual
pixel values and the dotted lines indicate the fitted 1D function.
The shaded green and blue regions indicate the FWHM measurements.

[image: Radial tab of Pick area]
“Radial” tab of Pick area.

The “Radial” tab contains a radial profile plot.
Plotted points in blue are data values, and a line is fitted to the
data.

[image: Cut tab of Pick area]
“Cut” tab of Pick area.

The “Cuts” tab contains a profile plot for the vertical and horizontal
cuts represented by the crosshairs present in “Quick Mode” ON. This plot
is updated in real time as the pick area is moved. In “Quick Mode” OFF,
this plot is not updated.

[image: Readout tab of Pick area]
“Readout” tab of Pick area.

The “Readout” tab will be populated with a summary of the measurements.
There are two buttons and two check boxes in this tab:

	The “Default Region” button restores the pick region to the default
shape and size.

	The “Pan to pick” button will pan the channel viewer to the
located center.

	The “Quick Mode” check box toggles “Quick Mode” on and off.
This affects the behavior of the pick region as described above.

	The “From Peak” check box changes the behavior of “Quick Mode” slightly
as described above.

[image: Controls tab of Pick area]
“Controls” tab of Pick area.

The “Controls” tab has a couple of buttons that will work off of the
measurements.

	The “Bg cut” button will set the low cut level of the channel viewer
to the measured background level. A delta to this value can be
applied by setting a value in the “Delta bg” box (press “Enter” to
change the setting).

	The “Sky cut” button will set the low cut level of the channel viewer
to the measured sky level. A delta to this value can be
applied by setting a value in the “Delta sky” box (press “Enter” to
change the setting).

	The “Bright cut” button will set the high cut level of the channel
viewer to the measured sky+brightness levels. A delta to this value
can be applied by setting a value in the “Delta bright” box
(press “Enter” to change the setting).

[image: Report tab of Pick area]
“Report” tab of Pick area.

The “Report” tab is used to record information about the measurements in
tabular form.

By pressing the “Add Pick” button, the information about the most recent
candidate is added to the table. If the “Record Picks automatically”
checkbox is checked, then any candidates are added to the table
automatically.

Note

If the “Show candidates” checkbox in the “Settings” tab is
checked, then all objects found in the region (according to
the settings) will be added to the table instead of just the
selected candidate.

You can clear the table at any time by pressing the “Clear Log” button.
The log can be saved to a table by putting a valid path and
filename in the “File:” box and pressing “Save table”. File type is
automatically determined by the given extension (e.g., “.fits” is FITS and
“.txt” is plain text).

If no candidate is found

If no candidate can be found (based on the settings), then the pick area
is marked with a red point centered on the pick area.

[image: Marker when no candidate found]
Marker when no candidate found.

The image cutout will be taken from this central area and so the “Image”
tab will still have content. It will also be marked with a central red
“X”.

The contour plot will still be produced from the cutout, and the cuts
plot will be updated in “Quick Mode”.

[image: Contour when no candidate found.]
Contour when no candidate found.

All the other plots will be cleared.

The Settings Tab

[image: Settings tab of Pick plugin]
“Settings” tab of Pick plugin.

The “Settings” tab controls aspects of the search within the pick area:

	The “Show candidates” checkbox controls whether all detected sources
are marked or not (as shown in the figure below). Additionally, if
checked, then all the found objects are added to the pick log table
when using the “Report” controls.

	The “Draw type” parameter is used to choose the shape of the pick area
to be drawn.

	The “Radius” parameter sets the radius to be used when finding and
evaluating bright peaks in the image.

	The “Threshold” parameter is used to set a threshold for peak finding;
if set to “None”, then a reasonable default value will be chosen.

	The “Min FWHM” and “Max FWHM” parameters can be used to eliminate
certain sized objects from being candidates.

	The “Ellipticity” parameter is used to eliminate candidates based on
their asymmetry in shape.

	The “Edge” parameter is used to eliminate candidates based on how
close to the edge of the cutout they are. NOTE: currently this
works reliably only for non-rotated rectangular shapes.

	The “Max side” parameter is used to limit the size of the bounding box
that can be used in the pick shape. Larger sizes take longer to
evaluate.

	The “Coordinate Base” parameter is an offset to apply to located
sources. Set to “1” if you want sources pixel locations reported
in a FITS-compliant manner and “0” if you prefer 0-based indexing.

	The “Calc center” parameter is used to determine whether the center
is calculated from FWHM fitting (“fwhm”) or centroiding (“centroid”).

	The “FWHM fitting” parameter is used to determine which function is
is used for FWHM fitting (“gaussian” or “moffat”).

	The “Contour Interpolation” parameter is used to set the interpolation
method used in rendering the background image in the “Contour” plot.

The “Redo Pick” button will redo the search operation. It’s convenient
if you have changed some parameters and want to see the effect based on the
current pick area without disturbing it.

[image: The channel viewer when "Show candidates" is checked.]
The channel viewer when “Show candidates” is checked.

User Configuration

It is customizable using ~/.ginga/plugin_Pick.cfg, where ~
is your HOME directory:

#
Pick plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pick.cfg"

color_pick = 'green'
shape_pick = 'box'
color_candidate = 'purple'

Offset to add to Pick results. Default is 1.0 for FITS like indexing,
set to 0.0 here if you prefer numpy-like 0-based indexing
pixel_coords_offset = 0.0

Maximum side for a pick region
max_side = 1024

For contour plot
num_contours = 8
How big of a radius are we willing to consider from the center of the
pick? bigger numbers == slower
contour_size_min = 10
contour_size_limit = 70

Start in Quick Mode?
quick_mode = False
quick_from_peak = True
for future use
quick_update_interval = 0.25
quick_drag_only = True

Star candidate search parameters
radius = 10
Set threshold to None to auto calculate it
threshold = None
Minimum and maximum fwhm to be considered a candidate
min_fwhm = 2.0
max_fwhm = 50.0
Minimum ellipticity to be considered a candidate
min_ellipse = 0.5
Percentage from edge to be considered a candidate
edge_width = 0.01
Graphically indicate all possible considered candidates
show_candidates = False

Center of object is based on FWHM ("fwhm") or centroid ("centroid")
calculation:
calc_center_alg = 'centroid'

Fitting function to use for FWHM ("gaussian" or "moffat")
calc_fwhm_alg = 'gaussian'

Defaults for delta cut levels (in Controls tab)
delta_sky = 0.0
delta_bright = 0.0

use a different color/intensity map than channel image?
pick_cmap_name = None
pick_imap_name = None

For Reports tab
record_picks = True

Set this to a file name, if None a filename will be automatically chosen
report_log_path = None

Ruler

[image: Ruler plugin]
Ruler is a simple plugin designed to measure distances on an image.

Plugin Type: Local

Ruler is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

Ruler measures distance by calculating a spherical triangulation
via WCS mapping of three points defined by a single line drawn on the image.
By default, the distance is shown in arcminutes of sky, but using the
“Units” control, it can be changed to show degrees or pixel distance instead.

Click and drag to establish a ruler between two points.

Display the “Zoom” tab at the same time to precisely see detail
while drawing the ruler, if desired.

To erase the old and make a new ruler, click and drag again.
When another line is drawn, it replaces the first one.
When the plugin is closed, the graphic overlay is removed.
Should you want “sticky rulers”, use the Drawing plugin
(and choose “Ruler” as the drawing type).

Editing

To edit an existing ruler, click the radio button in the plugin
UI labeled “Edit”. If the ruler does not become selected
immediately, click on it. This should establish a bounding box around
the ruler and show its control points. Drag within the bounding box to
move the ruler or click and drag the endpoints to edit the ruler.

Units

The units shown for distance can be selected from the drop-down box
in the UI. You have a choice of “arcmin”, “degrees”, or “pixels”.
The first two require a valid and working WCS in the image.

MultiDim

[image: MultDim image display]
[image: MultDim table display]
A plugin to navigate HDUs in a FITS file or planes in a 3D cube or
higher dimension dataset.

Plugin Type: Local

MultiDim is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

MultiDim is a plugin designed to handle data cubes and multi-HDU FITS
files. If you have opened such an image in Ginga, starting this plugin
will enable you to browse to other slices of the cube or view other
HDUs.

For a data cube, you can save a slice as an image using the “Save Slice”
button or create a movie using the “Save Movie” button by entering the
“Start” and “End” slice indices. This feature requires mencoder to be
installed.

For a FITS table, its data are read in using Astropy table.
Column units are displayed right under the main header (“None” if no unit).
For masked columns, masked values are replaced with pre-defined fill values.

Browsing HDUs

Use the HDU drop down list in the upper part of the UI to browse and
select an HDU to open in the channel.

Navigating Cubes

Use the controls in the lower part of the UI to select the axis and
to step through the planes in that axis.

User Configuration

It is customizable using ~/.ginga/plugin_MultiDim.cfg, where ~
is your HOME directory:

#
MultiDim plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_MultiDim.cfg"

If set to True, will auto open the plugin when an image is loaded
with NAXIS >= 3
auto_start_naxis = False

Cuts

[image: Cuts plugin]
A plugin for generating a plot of the values along a line or path.

Plugin Type: Local

Cuts is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

Cuts plots a simple graph of pixel values vs. index for a line drawn
through the image. Multiple cuts can be plotted.

There are four kinds of cuts available: line, path, freepath and
beziercurve:

	The “line” cut is a straight line between two points.

	The “path” cut is drawn like an open polygon, with straight segments
in-between.

	The “freepath” cut is like a path cut, but drawn using a free-form
stroke following the cursor movement.

	The “beziercurve” path is a cubic Bezier curve.

If a new image is added to the channel while the plugin is active, it
will update with the new calculated cuts on the new image.

If the “enable slit” setting is enabled, this plugin will also allow
slit image functionality (for multidimensional images) via a “Slit” tab.
In the tab UI, select one axis from the “Axes” list and draw a line.
This will create a 2D image that assumes the first two axes are
spatial and index the data along the selected axis.
Much like Cuts, you can view the other slit images using the cut
selection drop down box.

Drawing Cuts

The “New Cut Type” menu let you choose what kind of cut you are going to draw.

Choose “New Cut” from the “Cut” dropdown menu if you want to draw a
new cut. Otherwise, if a particular named cut is selected then that
will be replaced by any newly drawn cut.

While drawing a path or beziercurve cut, press ‘v’ to add a vertex,
or ‘z’ to remove the last vertex added.

Keyboard Shortcuts

While hovering the cursor, press ‘h’ for a full horizontal cut and
‘j’ for a full vertical cut.

Deleting Cuts

To delete a cut, select its name from the “Cut” dropdown and click the
“Delete” button. To delete all cuts, press “Delete All”.

Editing Cuts

Using the edit canvas function, it is possible to add new vertices to
an existing path and to move vertices around. Click the “Edit”
radio button to put the canvas in edit mode. If a cut is not
automatically selected, you can now select the line, path, or curve by
clicking on it, which should enable the control points at the ends or
vertices – you can drag these around. To add a new vertex to a path,
hover the cursor carefully on the line where you want the new vertex
and press ‘v’. To get rid of a vertex, hover the cursor over it and
press ‘z’.

You will notice one extra control point for most objects, which has
a center of a different color – this is a movement control point for
moving the entire object around the image when in edit mode.

You can also select “Move” to just move a cut unchanged.

Changing Width of Cuts

The width of ‘line’ cuts can be changed using the “Width Type” menu:

	“none” indicates a cut of zero radius; i.e., only showing the pixel
values along the line

	“x” will plot the sum of values along the X axis orthogonal to the cut.

	“y” will plot the sum of values along the Y axis orthogonal to the cut.

	“perpendicular” will plot the sum of values along an axis perpendicular
to the cut.

The “Width radius” controls the width of the orthogonal summation by
an amount on either side of the cut – 1 would be 3 pixels, 2 would be 5
pixels, etc.

Saving Cuts

Use the “Save” button to save the Cuts plot as as image and
data as a Numpy compressed archive.

User Configuration

It is customizable using ~/.ginga/plugin_Cuts.cfg, where ~
is your HOME directory:

#
Cuts plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Cuts.cfg"

If set to True will always select a cut after drawing it
select_new_cut = True

If set to True will automatically change to "move" mode after draw
draw_then_move = True

If set to True will label cuts with a text annotation
label_cuts = True

If set to True will add a legend to the cuts plot
show_cuts_legend = False

If set to True will add Slit tab
enable_slit = False

Default cut colors
colors = ['magenta', 'skyblue2', 'chartreuse2', 'cyan', 'pink', 'burlywood2', 'yellow3', 'turquoise', 'coral1', 'mediumpurple2']

If set to True, will update graph continuously as cursor is dragged
around image
drag_update = False

Histogram

[image: Histogram plugin]
Histogram plots a histogram for a region drawn in the image, or for the
entire image.

Plugin Type: Local

Histogram is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

Click and drag to define a region within the image that will be used to
calculate the histogram. To take the histogram of the full image, click
the button in the UI labeled “Full Image”.

Note

Depending on the size of the image, calculating the
full histogram may take time.

If a new image is selected for the channel, the histogram plot will be
recalculated based on the current parameters with the new data.

UI Controls

Three radio buttons at the bottom of the UI are used to control the
effects of the click/drag action:

	select “Move” to drag the region to a different location

	select “Draw” to draw a new region

	select “Edit” to edit the region

To make a log plot of the histogram, check the “Log Histogram” checkbox.
To plot by the full range of values in the image instead of by the range
within the cut values, uncheck the “Plot By Cuts” checkbox.

The “NumBins” parameter determines how many bins are used in calculating
the histogram. Type a number in the box and press “Enter” to change the
default value.

Cut Levels Convenience Controls

Because a histogram is useful feedback for setting the cut levels,
controls are provided in the UI for setting the low and high cut levels
in the image, as well as for performing an auto cut levels, according to
the auto cut levels settings in the channel preferences.

User Configuration

It is customizable using ~/.ginga/plugin_Histogram.cfg, where ~
is your HOME directory:

#
Histogram plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Histogram.cfg"

Switch to "move" mode after selection
draw_then_move = True

Number of bins for histogram
num_bins = 2048

Histogram color
hist_color = 'aquamarine'

Crosshair

[image: Crosshair plugin]
Crosshair is a simple plugin to draw crosshairs labeled with the
position of the cross in pixels coordinates, WCS coordinates, or
data value at the cross position.

Plugin Type: Local

Crosshair is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

Select the appropriate type of output in the “Format” drop-down
box in the UI: “xy” for pixel coordinates, “coords” for the WCS
coordinates, and “value” for the value at the crosshair position.

Then, click and drag to position the crosshair.

Overlays

[image: Overlays plugin]
A plugin for generating color overlays representing under- and
over-exposure in the loaded image.

Plugin Type: Local

Overlays is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

Choose colors from the drop-down menus for the low-limit and/or
high-limit (“Lo color” and “Hi color”, respectively). Specify the limits
for low and high values in the limit boxes (“Lo limit” and “Hi limit”,
respectively). Set the opacity of the overlays with a value between
0 and 1 in the “Opacity” box. Finally, press the “Redo” button.

The color overlay should show areas below the low limit with a low color
and the areas above the high limit in the high color.
If you omit a limit (leave the box blank), that color won’t be shown in
the overlay.

If a new image is selected for the channel, the overlays image will be
recalculated based on the current parameters with the new data.

WCSAxes

[image: WCSAxes plugin]
A plugin for generating WCS axes overlay in the loaded image.

Plugin Type: Local

WCSAxes is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

As long as image as a valid WCS, WCS axes will be displayed.
Use plugin GUI or configuration file to customize axes display.

It is customizable using ~/.ginga/plugin_WCSAxes.cfg, where ~
is your HOME directory:

#
WCSAxes plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_WCSAxes.cfg"

Color, style, and width of grid lines
linecolor = 'cyan'
linestyle = 'solid'
linewidth = 1

Alpha (opacity) of grid lines; 1=opaque, 0=transparent
alpha = 1

Number of RA and DEC lines to draw
n_ra_lines = 10
n_dec_lines = 10

Show RA and DEC values of grid lines
show_label = True

Label font size
fontsize = 8

Label offset from grid lines (pixels)
label_offset = 4

TVMark

[image: TVMark plugin]
Mark points from file (non-interative mode) on an image.

Plugin Type: Local

TVMark is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

This plugin allows non-interactive marking of points of interest by
reading in a file containing a table with RA and DEC positions of those points.
Any text or FITS table file that can be read by astropy.table is acceptable
but user must define the column names correctly in the plugin configuration
file (see below).
An attempt will be made to convert RA and DEC values to degrees.
If the unit conversion fails, they will be assumed to be in degrees already.

Alternately, if the file has columns containing the direct pixel locations,
you can read these columns instead by unchecking the “Use RADEC” box.
Again, the column names must be correctly defined in the plugin configuration
file (see below).
Pixel values can be 0- or 1-indexed (i.e., whether the first pixel is 0 or 1)
and is configurable (see below).
This is useful when you want to mark the physical pixels regardless of WCS
(e.g., marking hot pixels on a detector). RA and DEC will still be displayed if
the image has WCS information but they will not affect the markings.

To mark different groups (e.g., displaying galaxies as green circles and
background as cyan crosses, as shown above):

	Select green circle from the drop-down menus. Alternately, enter desired
size or width.

	Make sure “Use RADEC” box is checked, if applicable.

	Using “Load Coords” button, load the file containing RA and DEC (or X and Y)
positions for galaxies only.

	Repeat Step 1 but now select cyan cross from the drop-down menus.

	Repeat Step 2 but choose the file containing background positions only.

Selecting an entry (or multiple entries) from the table listing will
highlight the marking(s) on the image. The highlight uses the same shape
and color, but a slightly thicker line.

You can also highlight all the markings within a region both on the image
and the table listing by drawing a rectangle on the image
while this plugin is active.

Pressing the “Hide” button will hide the markings but does not clear the
plugin’s memory; That is, when you press “Show”, the same markings will
reappear on the same image. However, pressing “Forget” will clear the markings
both from display and memory; That is, you will need to reload your file(s) to
recreate the markings.

To redraw the same positions with different marking parameters, press “Forget”
and repeat the steps above, as necessary. However, if you simply wish to change
the line width (thickness), pressing “Hide” and then “Show” after you entered
the new width value will suffice.

If images of very different pointings/dimensions are displayed in the same
channel, markings that belong to one image but fall outside another will not
appear in the latter.

To create a table that this plugin can read, one can use results from
the Pick plugin, in addition to creating a table by hand, using
astropy.table, etc.

Used together with TVMask, you can overlay both point sources and masked
regions in Ginga.

It is customizable using ~/.ginga/plugin_TVMark.cfg, where ~
is your HOME directory:

#
TVMark plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_TVMark.cfg"

Marking type -- 'circle' or 'cross'
marktype = 'circle'

Marking color -- Any color name accepted by Ginga
markcolor = 'green'

Marking size or radius
marksize = 5

Marking line width (thickness)
markwidth = 1

Specify whether pixel values are 0- or 1-indexed
pixelstart = 1

True -- Use 'ra' and 'dec' columns to extract RA/DEC positions. This option
uses image WCS to convert to pixel locations.
False -- Use 'x' and 'y' columns to extract pixel locations directly.
This does not use WCS.
use_radec = True

Columns to load into table listing (case-sensitive).
Whether RA/DEC or X/Y columns are used depend on associated GUI selection.
ra_colname = 'ra'
dec_colname = 'dec'
x_colname = 'x'
y_colname = 'y'
Extra columns to display; e.g., ['colname1', 'colname2']
extra_columns = []

TVMask

[image: TVMask plugin]
Display masks from file (non-interative mode) on an image.

Plugin Type: Local

TVMask is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

This plugin allows non-interactive display of mask by reading in a FITS
file, where non-zero is assumed to be masked data.

To display different masks (e.g., some masked as green and some as pink, as
shown above):

	Select green from the drop-down menu. Alternately, enter desired
alpha value.

	Using “Load Mask” button, load the relevant FITS file.

	Repeat (1) but now select pink from the drop-down menu.

	Repeat (2) but choose another FITS file.

	To display a third mask as pink too, repeat (4) without changing the
drop-down menu.

Selecting an entry (or multiple entries) from the table listing will
highlight the mask(s) on the image. The highlight uses a pre-defined color and
alpha (customizable below).

You can also highlight all the masks within a region both on the image
and the table listing by drawing a rectangle on the image
while this plugin is active.

Pressing the “Hide” button will hide the masks but does not clear the
plugin’s memory; That is, when you press “Show”, the same masks will
reappear on the same image. However, pressing “Forget” will clear the masks
both from display and memory; That is, you will need to reload your file(s) to
recreate the masks.

To redraw the same masks with different color or alpha, press “Forget”
and repeat the steps above, as necessary.

If images of very different pointings/dimensions are displayed in the same
channel, masks that belong to one image but fall outside another will not
appear in the latter.

To create a mask that this plugin can read, one can use results from
the Drawing plugin (press “Create Mask” after drawing and save the
mask using SaveImage), in addition to creating a FITS
file by hand using astropy.io.fits, etc.

Used together with TVMark, you can overlay both point sources and
masked regions in Ginga.

It is customizable using ~/.ginga/plugin_TVMask.cfg, where ~
is your HOME directory:

#
TVMask plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_TVMask.cfg"

Mask color -- Any color name accepted by Ginga
maskcolor = 'green'

Mask alpha (transparency) -- 0=transparent, 1=opaque
maskalpha = 0.5

Highlighted mask color and alpha
hlcolor = 'white'
hlalpha = 1.0

Blink

[image: Blink plugin]
Blink switches through the images shown in a channel at a rate
chosen by the user. Alternatively, it can switch between channels
in the main workspace. In both cases, the primary purpose is to
compare and contrast the images (within a channel, or across
channels) visually within a short timescale – like blinking your
eyes.

Plugin Type: Local or Global

Blink can be invoked either as a local plugin, in which case
it cycles through the images in the channel, or as a global
plugin, in which case it cycles through the channels.

Local plugins are started from the “Operations” button, while
global plugins are started from the “Plugins” menu.

Usage

Set the interval between image changes in terms of seconds in
the box labeled “Interval”. Then, press “Start Blink” to start
the timed cycling, and “Stop Blink” to stop the cycling.

You can change the number in “Interval” and press Enter to
dynamically change the cycle time while the cycle is running.

It is customizable using ~/.ginga/plugin_Blink.cfg, where ~
is your HOME directory:

#
Blink plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Blink.cfg"

Blink channels instead of images within a channel
PLEASE NOTE: this option is DEPRECATED
blink_channels = False

the maximum interval for a blink
interval_max = 30.0

the minimum interval for a blink
interval_min = 0.25

LineProfile

[image: LineProfile plugin]
A plugin to graph the pixel values along a straight line bisecting a cube.

Plugin Type: Local

LineProfile is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

Warning

There are no restrictions to what axes can be chosen.
As such, the plot can be meaningless.

The LineProfile plugin is used for multidimensional (i.e., 3D or higher)
images. It plots the values of the pixels at the current cursor
position through the selected axis; or if a region is selected, it plots the
mean in each frame. This can be used to create normal spectral line profiles.
A marker is placed at the data point of the currently displayed frame.

Displayed X-axis is constructed using CRVAL*, CDELT*, CRPIX*,
CTYPE*, and CUNIT* keywords from FITS header. If any of the keywords
are unavailabled, the axis falls back to NAXIS* values instead.

Displayed Y-axis is constructed using BTYPE and BUNIT. If they are not
available, it simply labels pixel values as “Flux”.

To use this plugin:

	Select an axis.

	Pick a point or draw a region using the cursor.

	Use MultiDim to change step values of axes, if applicable.

It is customizable using ~/.ginga/plugin_LineProfile.cfg, where ~
is your HOME directory:

#
LineProfile plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_LineProfile.cfg"

Default mark type. This can be change in the GUI.
mark_type = 'point'

Properties of a point mark type. Radius can be change in Edit mode.
mark_radius = 10
mark_style='cross'

Mark color.
mark_color = 'cyan'

PixTable

[image: PixTable plugin]
PixTable provides a way to check or monitor the pixel values in
a region.

Plugin Type: Local

PixTable is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Basic Use

In the most basic use, simply move the cursor around the channel
viewer; an array of pixel values will appear in the “Pixel Values”
display in the plugin UI. The center value is highlighted, and this
corresponds to the value under the cursor.

You can choose a 3x3, 5x5, 7x7, or 9x9 grid from the left-most
combobox control. It may help to adjust the “Font Size” control
to prevent having the array values cut off on the sides. You can
also enlarge the plugin workspace to see more of the table.

Note

The order of the value table shown will not necessarily match to
the channel viewer if the images is flipped, transposed, or rotated.

Using Marks

If you click in the channel viewer, it will set a mark. There can
be any number of marks, and they are each noted with an “X”
annotated with a number. When that mark is selected, it will only
show the values around the mark. Simply change the mark control to
select a different mark to see the values around it.

The marks will stay in position even if a new image is loaded and
they will show the values for the new image. In this way you can
monitor the area around a spot if the image is updating frequently.

If the “Pan to mark” checkbox is selected, then when you select a
different mark from the mark control, the channel viewer will pan to
that mark. This can be useful to inspect the same spots in several
different images.

Note

If you change the mark control back to “None”, then the pixel
table will again update as you move the cursor around the viewer.

Deleting Marks

To delete a mark, select it in the mark control and then press the
button marked “Delete”. To delete all the marks, press the button
marked “Delete All”.

User Configuration

It is customizable using ~/.ginga/plugin_PixTable.cfg, where ~
is your HOME directory:

#
PixTable plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_PixTable.cfg"

Default font
font = 'fixed'

Default font size
fontsize = 12

Preferences

Make changes to channel settings graphically in the UI.

Plugin Type: Local

Preferences is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

The Preferences plugin sets the preferences on a per-channel basis.
The preferences for a given channel are inherited from the “Image”
channel until they are explicitly set and saved using this plugin.

If “Save Settings” is pressed, it will save the settings to the user’s
home Ginga folder so that when a channel with the same name is created
in future Ginga sessions it will obtain the same settings.

Color Distribution Preferences

[image: Color Distribution preferences]
“Color Distribution” preferences.

The “Color Distribution” preferences control the preferences used for the
data value to color index conversion that occurs after cut levels are
applied and just before final color mapping is performed. It concerns
how the values between the low and high cut levels are distributed to
the color and intensity mapping phase.

The “Algorithm” control is used to set the algorithm used for the
mapping. Click the control to show the list, or simply scroll the mouse
wheel while hovering the cursor over the control. There are eight
algorithms available: linear, log, power, sqrt, squared, asinh, sinh,
and histeq. The name of each algorithm is indicative of how
the data is mapped to the colors in the color map. “linear” is the
default.

Color Mapping Preferences

[image: Color Mapping preferences]
“Color Mapping” preferences.

The “Color Mapping” preferences control the preferences used for the
color map and intensity map, used during the final phase of the color
mapping process. Together with the “Color Distribution” preferences, these
control the mapping of data values into a 24-bpp RGB visual representation.

The “Colormap” control selects which color map should be loaded and
used. Click the control to show the list, or simply scroll the mouse
wheel while hovering the cursor over the control.

The “Intensity” control selects which intensity map should be used
with the color map. The intensity map is applied just before the color
map, and can be used to change the standard linear scale of values into
an inverted scale, logarithmic, etc.

Ginga comes with a good selection of color maps, but should you want
more, you can add custom ones or, if matplotlib is installed, you
can load all the ones that it has.
See “Customizing Ginga” for details.

Zoom Preferences

[image: Zoom preferences]
“Zoom” preferences.

The “Zoom” preferences control Ginga’s zooming/scaling behavior.
Ginga supports two zoom algorithms, chosen using the “Zoom Alg” control:

	The “step” algorithm zooms the image inwards in discrete
steps of 1X, 2X, 3X, etc. or outwards in steps of 1/2X, 1/3X, 1/4X,
etc. This algorithm results in the least artifacts visually, but is a
bit slower to zoom over wide ranges when using a scrolling motion
because more “throw” is required to achieve a large zoom change
(this is not the case if one uses of the shortcut zoom keys, such as
the digit keys).

	The “rate” algorithm zooms the image by advancing the scaling at
a rate defined by the value in the “Zoom Rate” box. This rate defaults
to the square root of 2. Larger numbers cause larger changes in scale
between zoom levels. If you like to zoom your images rapidly, at a
small cost in image quality, you would likely want to choose this
option.

Note that regardless of which method is chosen for the zoom algorithm,
the zoom can be controlled by holding down Ctrl (coarse) or Shift
(fine) while scrolling to constrain the zoom rate (assuming the default
mouse bindings).

The “Stretch XY” control can be used to stretch one of the axes (X or
Y) relative to the other. Select an axis with this control and roll the
scroll wheel while hovering over the “Stretch Factor” control to
stretch the pixels in the selected axis.

The “Scale X” and “Scale Y” controls offer direct access to the
underlying scaling, bypassing the discrete zoom steps. Here, exact
values can be typed to scale the image. Conversely, you will see these
values change as the image is zoomed.

The “Scale Min” and “Scale Max” controls can be used to place a
limit on how much the image can be scaled.

The “Zoom Defaults” button will restore the controls to the Ginga
default values.

Pan Preferences

[image: Pan Preferences]
“Pan” preferences.

The “Pan” preferences control Ginga’s panning behavior.

The “Pan X” and “Pan Y” controls offer direct access to set the pan
position in the image (the part of the image located at the center of
the window) – you can see them change as you pan around the image.

The “Center Image” button sets the pan position to the center of the
image, as calculated by halving the dimensions in X and Y.

The “Mark Center” check box, when checked, will cause Ginga to draw a
small reticle in the center of the image. This is useful for knowing
the pan position and for debugging.

Transform Preferences

[image: Transform Preferences]
“Transform” preferences.

The “Transform” preferences provide for transforming the view of the image
by flipping the view in X or Y, swapping the X and Y axes, or rotating
the image in arbitrary amounts.

The “Flip X” and “Flip Y” checkboxes cause the image view to be
flipped in the corresponding axis.

The “Swap XY” checkbox causes the image view to be altered by swapping
the X and Y axes. This can be combined with “Flip X” and “Flip Y” to rotate
the image in 90 degree increments. These views will render more quickly
than arbitrary rotations using the “Rotate” control.

The “Rotate” control will rotate the image view the specified amount.
The value should be specified in degrees. “Rotate” can be specified in
conjunction with flipping and swapping.

The “Restore” button will restore the view to the default view, which
is unflipped, unswapped, and unrotated.

Auto Cuts Preferences

[image: Auto Cuts Preferences]
“Auto Cuts” preferences.

The “Auto Cuts” preferences control the calculation of auto cut levels for
the view when the auto cut levels button or key is pressed, or when
loading a new image with auto cuts enabled.

The “Auto Method” control is used to choose which auto cuts algorithm
used: “minmax” (minimum maximum values), “histogram” (based on an image
histogram), “stddev” (based on the standard deviation of pixel values), or
“zscale” (based on the ZSCALE algorithm popularized by IRAF).
As the algorithm is changed, the boxes under it may also change to
allow changes to parameters particular to each algorithm.

WCS Preferences

[image: WCS Preferences]
“WCS” preferences.

The “WCS” preferences control the display preferences for the World
Coordinate System (WCS) calculations used to report the cursor position in the
image.

The “WCS Coords” control is used to select the coordinate system in
which to display the result.

The “WCS Display” control is used to select a sexagesimal (H:M:S)
readout or a decimal degrees readout.

New Image Preferences

[image: New Image Preferences]
“New Image” preferences.

The “New Images” preferences determine how Ginga reacts when a new image
is loaded into the channel. This includes when an older image is
revisited by clicking on its thumbnail in the Thumbs plugin pane.

The “Cut New” setting controls whether an automatic cut-level
calculation should be performed on the new image, or whether the
currently set cut levels should be applied. The possible settings are:

	“on”: calculate a new cut levels always;

	“override”: calculate a new cut levels until the user overrides
it by manually setting a cut levels, then turn “off”; or

	“off”: always use the currently set cut levels.

Tip

The “override” setting is provided for the convenience of
having automatic cut levels, while preventing a manually set
cuts from being overridden when a new image is ingested. When
typed in the image window, the semicolon key can be used to
toggle the mode back to override (from “off”), while colon will
set the preference to “on”. The Info panel shows
the state of this setting.

The “Zoom New” setting controls whether a newly visited image should
be zoomed to fit the window. There are three possible values: on,
override, and off:

	“on”: the new image is always zoomed to fit;

	“override”: images are automatically fitted until the zoom level is
changed manually, then the mode automatically changes to “off”, or

	“off”: always use the currently set zoom levels.

Tip

The “override” setting is provided for the convenience of
having an automatic zoom, while preventing a manually set zoom
level from being overridden when a new image is ingested. When
typed in the image window, the apostrophe (a.k.a. “single quote”)
key can be used to toggle the mode back to “override” (from
“off”), while quote (a.k.a. double quote) will set the preference
to “on”. The global plugin Info panel shows the state of this
setting.

The “Center New” box, if checked, will cause newly visited images to
always have the pan position reset to the center of the image. If
unchecked, the pan position is unchanged from the previous image.

The “Follow New” setting is used to control whether Ginga will change
the display if a new image is loaded into the channel. If unchecked,
the image is loaded (as seen, for example, by its appearance in the
Thumbs tab), but the display will not change to the new image. This
setting is useful in cases where new images are being loaded by some
automated means into a channel and the user wishes to study the current
image without being interrupted.

The “Raise New” setting controls whether Ginga will raise the tab of a
channel when an image is loaded into that channel. If unchecked, then
Ginga will not raise the tab when an image is loaded into that
particular channel.

The “Create Thumbnail” setting controls whether Ginga will create a
thumbnail for images loaded into that channel. In cases where many
images are being loaded into a channel frequently (e.g., a low frequency
video feed), it may be undesirable to create thumbnails for all of them.

Catalogs

A plugin for plotting object locations from a catalog on an image.

Plugin Type: Local

Catalogs is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

Before Catalogs can be used, you need to define at least one catalog or
image server to be queried in ginga_config.py. Here is an example for
defining three cone search catalogs for guide stars:

def pre_gui_config(ginga):
 from ginga.util.catalog import AstroPyCatalogServer

 # Add Cone Search services
 catalogs = [
 ('The HST Guide Star Catalog, Version 1.2 (Lasker+ 1996) 1',
 'GSC_1.2'),
 ('The PMM USNO-A1.0 Catalogue (Monet 1997) 1', 'USNO_A1'),
 ('The USNO-A2.0 Catalogue (Monet+ 1998) 1', 'USNO_A2'),
]
 bank = ginga.get_ServerBank()
 for longname, shortname in catalogs:
 obj = AstroPyCatalogServer(
 ginga.logger, longname, shortname, '', shortname)
 bank.addCatalogServer(obj)

def post_gui_config(ginga):
 pass

Then, start Ginga and then start the Catalogs local plugin from the
channel you want to perform searchs on. You will see the catalogs listed
in a drop-down menu on the plugin GUI.

Draw a shape on the displayed image and adjust search parameters as desired.
When you are ready, press on the button to perform the search.
When search results are available, they will be displayed on the image and
also listed in a table on the plugin GUI. You can click on either the table
or the image to highlight selection.

It is customizable using ~/.ginga/plugin_Catalogs.cfg, where ~
is your HOME directory:

#
Catalogs plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Catalogs.cfg"

draw_type = 'circle'
select_color = 'skyblue'
color_outline = 'aquamarine'
click_radius = 10

Mosaic

Plugin to create image mosaic.

Plugin Type: Local

Mosaic is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

Warning

This can be very memory intensive.

This plugin is used to automatically create a mosaic in the channel using
images provided by the user (e.g., using FBrowser).
The position of an image on the mosaic is determined by its WCS without
distortion correction. This is meant as a quick-look tool, not a
replacement for image drizzling that takes account of image distortion, etc.
The mosaic only exists in memory but you can save it out to a
FITS file using SaveImage.

When a mosaic falls out of memory, it is no longer accessible in Ginga.
To avoid this, you must configure your session such that your Ginga data cache
is sufficiently large (see “Customizing Ginga” in the manual).

To create a new mosaic, set the FOV and drag files onto the display window.
Images must have a working WCS.

It is customizable using ~/.ginga/plugin_Mosaic.cfg, where ~
is your HOME directory:

#
Mosaic plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Mosaic.cfg"

annotate images with their names
annotate_images = False

default FOV for new mosaics
fov_deg = 0.2

Try to match backgrounds
match_bg = False

Number of pixels to trim from edges
trim_px = 0

Merge (coadd pixels) instead of overlapping tiles
merge = False

Number of threads to devote to opening images
num_threads = 4

dropping a new file or files starts a new mosaic
drop_creates_new_mosaic = False

Set to True when you want to mosaic image HDUs in a file
mosaic_hdus = False

Limit on skew between X and Y axis after warping tile acceptable for mosaic
skew_limit = 0.1

Allow the mosaic image to expand if new tiles are added that
aren't in the region
allow_expand = True

When expanding an image, pad on a side by this many deg
expand_pad_deg = 0.01

Maximum delta from center of image (in deg) beyond which new images
are assumed to start a new mosaic. Set to None if you never want this
bahavior
max_center_deg_delta = 2.0

Allow mosaic images to create thumbnail entries
make_thumbs = False

Reuse existing mosaic for new mosaic (faster)
reuse_image = False

Drawing

A plugin for drawing canvas forms (overlaid graphics).

Plugin Type: Local

Drawing is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

This plugin can be used to draw many different shapes on the image display.
When it is in “draw” mode, select a shape from the drop-down menu, adjust
the shape’s parameters (if needed), and draw on the image by using left
mouse button. You can choose to draw in pixel or WCS space.

To move or edit an existing shape, set the plugin on “edit” or “move” mode,
respectively.

To save the drawn shape(s) as mask image, click the “Create Mask” button
and you will see a new mask image created in Ginga. Then, use SaveImage
plugin to save it out as single-extension FITS. Note that the mask will
take the size of the displayed image. Therefore, to create masks for
different image dimensions, you need to repeat the steps multiple times.

FBrowser

A plugin for browsing the local filesystem and loading files.

Plugin Type: Global or Local

FBrowser is a hybrid global/local plugin, which means it can be invoked
in either fashion. If invoked as a local plugin then it is associated
with a channel, and an instance can be opened for each channel. It can
also be opened as a global plugin.

Usage

Navigate the directory tree until you come to the location files
you want to load. You can double click a file to load it into the
associated channel, or drag a file into a channel viewer window to
load it into any channel viewer.

Multiple files can be selected by holding down Ctrl (Command on Mac),
or Shift-clicking to select a contiguous range of files.

You may also enter full path to the desired image(s) in the text box as
/my/path/to/image.fits, /my/path/to/image.fits[ext],
/my/path/to/image*.fits, or /my/path/to/image*.fits[ext].

Because it is a local plugin, FBrowser will remember its last
directory if closed and then restarted.

It is customizable using ~/.ginga/plugin_FBrowser.cfg, where ~
is your HOME directory:

#
FBrowser plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_FBrowser.cfg"

Set to a specific directory to choose a starting point for file exploration.
If None is given, it defaults to your HOME.
home_path = None

This controls whether the plugin scans the FITS headers to create the
listing (slow for large numbers of files)
scan_fits_headers = False

If the number of files in the listing is greater than this, don't do
a scan on the headers
scan_limit = 100

if scan_fits_headers is True, then the keywords provides a map between
attributes and FITS header keywords to fetch from the header
keywords = [('Object', 'OBJECT'), ('Date', 'DATE-OBS'), ('Time UT', 'UT')]

columns lists the column headers and attributes to show in the listing.
If you want to include FITS keywords, be sure to include the attributes
defined in the keywords preference (i.e., 'Time UT', 'Object')
columns = [('Type', 'icon'), ('Name', 'name'), ('Size', 'st_size_str'), ('Mode', 'st_mode_oct'), ('Last Changed', 'st_mtime_str')]

If True, color every other row in alternating shades to improve
readability of long tables
color_alternate_rows = True

Maximum number of rows that will turn off auto column resizing (for speed)
max_rows_for_col_resize = 5000

Compose

A plugin for composing RGB images from constituent monochrome images.

Plugin Type: Local

Compose is a local plugin, which means it is associated with a
channel. An instance can be opened for each channel.

Usage

Start the Compose plugin from the “Operations” menu – the tab should
show up under “Dialogs”.

	Select the kind of composition you want to make from the “Compose Type”
drop down: “RGB” for composing three monochrome images into a color
image, “Alpha” to compose a series of images as layers with different
alpha values for each layer.

	Press “New Image” to start composing a new image.

For RGB composition

	Drag your three constituent images that will make up the R, G, and B
planes to the “Preview” window – drag them in the order R (red),
G (green), and B (blue). Alternatively, you can load the images into
the channel viewer one by one and after each one pressing “Insert from
Channel” (similarly, do these in the order of R, G, and B).

In the plugin GUI, the R, G, and B images should show up as three slider
controls in the “Layers” area of the plugin, and the Preview should show
a low resolution version of how the composite image looks with the sliders
set.

[image: Composing an RGB image]
Composing an RGB Image.

	Play with the alpha levels of each layer using the sliders in the
Compose plugin; as you adjust a slider the preview image should
update.

	When you see something you like, you can save it to a file using the
“Save As” button (use “jpeg” or “png” as the file extension), or insert
it into the channel using the “Save to Channel” button.

For Alpha composition

For Alpha-type composition the images are just combined in the order shown
in the stack, with Layer 0 being the bottom layer, and successive layers
stacked on top. Each layer’s alpha level is adjustible by a slider in the
same manner as discussed above.

[image: Alpha-composing an image]
Alpha-composing an image.

	Drag your N constituent images that will make up the layers to the
“Preview” window, or load the images into the channel viewer one by
one and after each one pressing “Insert from Channel” (the first image
will be at the bottom of the stack–layer 0).

	Play with the alpha levels of each layer using the sliders in the
Compose plugin; as you adjust a slider the preview image should
update.

	When you see something you like, you can save it to a file using the
“Save As” button (use “fits” as the file extension), or insert it into
the channel using the “Save to Channel” button.

General Notes

	The preview window is just a ginga widget, so all the usual bindings
apply; you can set color maps, cut levels, etc. with the mouse and key
bindings.

PlotTable

[image: PlotTable display]
A plugin to display basic plot for any two selected columns
in a table.

Plugin Type: Local

PlotTable is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

PlotTable is a plugin designed to plot any two selected columns for a given
FITS table HDU (can be accessed via MultiDim).
For masked columns, masked data is not shown (even if only one of the
(X, Y) pair is masked).
It is meant as a way to quickly look at table data and not for detailed
scientific analysis.

It is customizable using ~/.ginga/plugin_PlotTable.cfg, where ~
is your HOME directory:

#
PlotTable plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_PlotTable.cfg"

matplotlib options for plotted line
linewidth = 1
linestyle = '-'
linecolor = 'blue'

matplotlib options for markers
markersize = 6
markerwidth = 0.5
markerstyle = 'o'
markercolor = 'red'

Show markers (can also be set in GUI)
show_marker = True

Table column numbers to plot (can also be set in GUI).
0 = row indices, not the first table column
x_index = 1
y_index = 2

Output file suffix (as accepted by matplotlib)
file_suffix = '.png'

Pipeline

Simple data reduction pipeline plugin for Ginga.

Note

This plugin is available but not loaded into Ginga
reference viewer by default because it is experimental.

Plugin Type: Local

Pipeline is a local plugin, which means it is associated with a channel.
An instance can be opened for each channel.

Usage

It is customizable using ~/.ginga/plugin_Pipeline.cfg, where ~
is your HOME directory:

#
Pipeline plugin preferences file
#
Place this in file under ~/.ginga with the name "plugin_Pipeline.cfg"

num_threads = 4

ScreenShot

[image: ScreenShot plugin]
Capture PNG or JPEG images of the channel viewer image.

Usage

	Select the RGB graphics type for the snap from the “Type” combo box.

	Press “Snap” when you have the channel image the way you want to capture it.

A copy of the RGB image will be loaded into the ScreenShot viewer.
You can pan and zoom within the ScreenShot viewer like a normal Ginga
viewer to examine detail (e.g., see the magnified difference between
JPEG and PNG formats).

	Repeat (1) and (2) until you have the image you want.

	Enter a valid path for a new file into the “Folder” text box.

	Enter a valid name for a new file into the “Name” text box.
There is no need to add the file extension; it will be added, if needed.

	Press the “Save” button. The file will be saved where you specified.

Notes

	PNG offers less artifacts for overlaid graphics, but files are larger
than JPEG.

	The “Center” button will center the snap image; “Fit” will set the
zoom to fit it to the window; and “Clear” will clear the image.

	Press “1” in the screenshot viewer to zoom to 100% pixels.

Customizing Ginga

One of the primary guiding concepts behind the Ginga project is to
provide convenient ways to build custom viewers. The reference viewer
embodies this concept through the use of a flexible layout engine and
the use of plugins to implement all the major user interface features.
By modifying or replacing the layout and adding, subclassing or removing
plugins you can completely change the look, feel and operation of the
reference viewer.

This chapter explains how you can customize the Ginga reference viewer
in various ways, as a user or a developer.

Configuration Options

Ginga examines a configuration directory on startup to check for any
configuration files or customization of the default behavior.

Note

The configuration area is determined first by examining the
environment variable GINGA_HOME. If that is not set, then
$HOME/.ginga (Mac OS X, Linux) or
$HOMEDRIVE:$HOMEPATH\\.ginga (Windows) will be used.

Examples of the types of configuration files with comments describing the
effects of the parameters can be found in .../ginga/examples/configs.
Many of the plugins have their own configuration file, with preferences
that are only changed via that file. You can copy an example
configuration file to your Ginga settings area and change the settings
to your liking.

Usually it is sufficient to simply close the plugin and open it again to
pick up any settings changes, but some changes may require a viewer
restart to take effect.

Channels also use configuration files to store many different settings
for the channel viewer windows. When a channel is created, the
reference viewer looks to see if there is a configuration file for that
channel in the configuration area; if so, the settings therein are used
to configure it. If not, the settings for the generic startup channel
“Image” are used to configure the new channel. The “Preferences” plugin
can be used to set many of the channel settings. If you set these for
the “Image” channel and use the “Save” button, other channels will
inherit them. You can also manually copy the example file from
.../ginga/examples/configs/channel_Image.cfg to your configuration
area and edit it if you prefer.

Saving the workspace layout between sessions

By default, Ginga will will write its window size, position and some layout
information to a “layout” file in the configuration directory when the
program is closed. Upon a subsequent startup Ginga will attempt to
restore the window to the saved configuration. If this behavior is not
desired you can add the option save_layout = False to your
general.cfg file in the Ginga configuration directory.

There is a sample general.cfg file in .../ginga/examples/configs.

Invoking the program with the --norestore option also prevents it from
reading the saved layout file. This may be needed in some cases when
the layout changes in an incompatible way between when the program was
last stopped and when it was started again.

Rebinding Controls

One configuration file that many users will be interested in is the one
controlling how keyboard and mouse/touch bindings are assigned. This is
handled by the configuration file bindings.cfg. Several examples
are stored in .../ginga/examples/bindings, including an example for
users familiar with the ds9 mouse controls, and an example for users
using a touchpad without a mouse (pinch zoom and scroll panning).
Simply copy the appropriate file to your Ginga settings area as
bindings.cfg.

Customizing the Reference Viewer During Initialization

The reference viewer can be customized during viewer initialization
using a module called ginga_config, which can be anywhere in the
user’s Python import path, including in the Ginga configuration folder
described above (e.g. $HOME/.ginga/ginga_config.py).

Specifically, this file will be imported and two methods will be run if
defined: pre_gui_config(ginga_shell) and
post_gui_config(ginga_shell).
The parameter to each function is the main viewer shell. These functions
can be used to define a different viewer layout, add or remove plugins,
add menu entries, add custom image or star catalogs, etc. We will refer
back to these functions in the sections below.

Workspace configuration

Ginga has a flexible table-driven layout scheme for dynamically creating
workspaces and mapping the available plugins to workspaces. By changing
a couple of tables via ginga_config.pre_gui_config() you can change
the way Ginga looks and presents its content.

If you examine the module ginga.rv.main you will find a layout table
called default_layout:

default_layout = ['seq', {},
 ['vbox', dict(name='top', width=1400, height=700),
 dict(row=['hbox', dict(name='menu')],
 stretch=0),
 dict(row=['hpanel', dict(name='hpnl'),
 ['ws', dict(name='left', wstype='tabs',
 width=300, height=-1, group=2),
 # (tabname, layout), ...
 [("Info", ['vpanel', {},
 ['ws', dict(name='uleft', wstype='stack',
 height=250, group=3)],
 ['ws', dict(name='lleft', wstype='tabs',
 height=330, group=3)],
]
)]],
 ['vbox', dict(name='main', width=600),
 dict(row=['ws', dict(name='channels', wstype='tabs',
 group=1, use_toolbar=True)],
 stretch=1),
 dict(row=['ws', dict(name='cbar', wstype='stack',
 group=99)], stretch=0),
 dict(row=['ws', dict(name='readout', wstype='stack',
 group=99)], stretch=0),
 dict(row=['ws', dict(name='operations', wstype='stack',
 group=99)], stretch=0),
],
 ['ws', dict(name='right', wstype='tabs',
 width=400, height=-1, group=2),
 # (tabname, layout), ...
 [("Dialogs", ['ws', dict(name='dialogs', wstype='tabs',
 group=2)
]
)]
],
], stretch=1),
 dict(row=['ws', dict(name='toolbar', wstype='stack',
 height=40, group=2)],
 stretch=0),
 dict(row=['hbox', dict(name='status')], stretch=0),
]]

This rather arcane-looking table defines the precise layout of the
reference viewer shell, including how many workspaces it will have, their
characteristics, how they are organized, and their names.

The key point in this section is that you can modify this table or
replace it entirely with one of your own design and set it in the
pre_gui_config() method described above:

my_layout = [
 ...
]

def pre_gui_config(ginga_shell):
 ...

 ginga_shell.set_layout(my_layout)

If done in the pre_gui_config() method (as shown) the new layout will
be the one that is used when the GUI is constructed.

Format of the Layout Table

The table consists of a nested list of sublists, tuples and/or dictionaries.
The first item in a sublist indicates the type of the container to be
constructed. The following types are available:

	seq: defines a sequence of top-level windows to be created

	hpanel: a horizontal panel of containers, with handles to size them

	vpanel: a vertical panel of containers, with handles to size them

	hbox: a horizontal panel of containers of fixed size

	vbox: a vertical panel of containers of fixed size

	ws: a workspace that allows a plugin or a channel viewer to be
loaded into it. A workspace can be configured in four ways: as a
tabbed notebook (wstype="tabs"), as a stack (wstype="stack"), as
an MDI (Multiple Document Interface, wstype="mdi") or a grid
(wstype="grid").

	widget: a preconstructed widget passed in.

In every case the second item in the sublist is a dictionary that
provides some optional parameters that modify the characteristics of the
container. If there is no need to override the default parameters the
dictionary can simply be empty. The optional third and following items
are specifications for nested content.

All types of containers honor the following parameters:

	width: can specify a desired width in pixels for the container.

	height: can specify a desired height in pixels for the container.

	name: specifies a mapping of a name to the created container
widget. The name is important especially for workspaces, as they may
be referred to as an output destination when registering plugins.

Note

In the above example, we define a top-level window consisting
of a vbox (named “top”) with 4 layers: a hbox (“menu”), hpanel
(“hpnl”), a workspace (“toolbar”) and another hbox (“status”).
The main horizontal panel of three containers: a workspace
(“left”) with a width of 300 pixels, a vbox (“main”, 700
pixels) and a workspace (“right”, 400 pixels).
The “left” workspace is pre-populated
with an “Info” tab containing a vertical panel of two
workspaces: “uleft” and “lleft” with heights of 300 and 430
pixels, respectively. The “right” workspace is pre-populated
with a “Dialogs” tab containing an empty workspace.
The “main” vbox is configured with three rows of workspaces:
“channels”, “cbar” and “readout”.

Ginga uses some container names in special ways.
For example, Ginga looks for a “channels” workspace as the default
workspace for creating channels, and the “dialogs” workspace is where
most local plugins are instantiated (when activated), by default.
These two names should at least be defined somewhere in default_layout.

Auto-Start Plugins

Not all plugins provided by Ginga are automatically started up by default.
A plugin can be started automatically in post_gui_config() using the
start_global_plugin() or start_local_plugin() methods, as appropriate:

def post_gui_config(ginga_shell):
 # Auto start global plugins
 ginga_shell.start_global_plugin('Zoom')
 ginga_shell.start_global_plugin('Header')

 # Auto start local plugin
 ginga_shell.add_channel('Image')
 ginga_shell.start_local_plugin('Image', 'Histogram', None)

Alternately, you can also start plugins via the command line interface using
--plugins and -modules for local and global plugins, respectively.
To load multiple plugins at once, use a comma-separated list. For example:

ginga --plugins=MyLocalPlugin,Imexam --modules=MyGlobalPlugin

Adding Plugins

A plugin can be added to the reference viewer in pre_gui_config()
using the add_plugin() method with a specification (“spec”) for
the plugin:

from ginga.misc.Bunch import Bunch

def pre_gui_config(ginga_shell):
 ...

 spec = Bunch(module='DQCheck', klass='DQCheck', workspace='dialogs',
 category='Utils', ptype='local')
 ginga_shell.add_plugin(spec)

The above call would try to load a local plugin called “DQCheck” from a
module called “DQCheck”. When invoked from the Operations menu it would
occupy a spot in the “dialogs” workspace (see layout discussion above).

Other keywords that can be used in a spec:

	Global plugins use ptype='global'.

	If a plugin should be hidden from the menus (e.g. it is started under
program control, not by the user), specify hidden=True.

	If the plugin should be started when the program starts, specify
start=True.

	To use a different name in the menu for starting the plugin, specify
menu="Custom Name".

	To use a different name in the tab that is showing the plugin GUI,
specify tab="Tab Name".

	To prevent a control icon from appearing in the Operations plugin
manager tray specify optray=False.

Disabling Plugins

Both local and global plugins can be disabled (thus, not shown in the
reference viewer) using the --disable-plugins option in the
command line interface. To remove multiple plugins at once,
use a comma-separated list. For example:

ginga --disable-plugins=Zoom,Compose

Alternately, plugins can also be disabled via general.cfg configuration
file. For example:

disable_plugins = "Zoom,Compose"

Some plugins, like Operations, when disabled, may result in
inconvenient GUI experience.

Making a Custom Startup Script

You can make a custom startup script to make the same reference viewer
configuration available without relying on the ginga_config module in
a personal settings area. To do this we make use of the main module:

import sys
from ginga.rv.main import ReferenceViewer
from optparse import OptionParser

my_layout = [...]

plugins = [...]

if __name__ == "__main__":
 viewer = ReferenceViewer(layout=my_layout)
 # add plugins
 for spec in plugins:
 viewer.add_plugin(spec)

 # Parse command line options with optparse module
 usage = "usage: %prog [options] cmd [args]"
 optprs = OptionParser(usage=usage)
 viewer.add_default_options(optprs)

 (options, args) = optprs.parse_args(sys_argv[1:])

 viewer.main(options, args)

Developing with Ginga

	Module Index

Developers interested in using Ginga in their project will probably
follow one of two logical development paths:

	using Ginga toolkit classes in a program of their own design, or

	starting with the full-featured reference viewer that comes with Ginga
and customizing it for some special purpose, typically by modifying
one of the plugins or writing a new plugin.

The first approach is probably best for when the developer has a custom
application in mind, needs a minimal but powerful viewer or wants to
develop an entirely new full-featured viewer. Developers interested in
this direction should head over to the chapter on the viewer object
(see Using the Basic Ginga Viewer Object in Python Programs).

The second approach is probably best for end users or developers that
are mostly satisfied with the reference viewer as a general purpose tool
and want to add some specific enhancements or functionality. Because
the reference viewer is based on a flexible plugin architecture this is
fairly straightforward to do.

Writing plugins for the reference viewer

The philosophy behind the design of the reference viewer distributed
with the Ginga is that it is simply a flexible layout shell for
instantiating instances of the Ginga view widgets described in the earlier
section. All of the other important pieces of a modern FITS viewer–a
panning widget, information panels, zoom widget, analysis panes–are
implemented as plugins: encapsulated modules that interface with the
viewing shell using a standardized API. This makes it easy to customize
and to add, change or remove functionality in a very modular, flexible way.

The Ginga viewer divides the application window GUI into containers that
hold either viewing widgets or plugins. The view widgets are called
“channels” in the viewer nomenclature, and are a means of organizing
images in the viewer, functioning much like “frames” in other viewers.
A channel has a name and maintains its own history of images that have
cycled through it. The user can create new channels as needed. For
example, they might use different channels for different kinds of
images: camera vs. spectrograph, or channels organized by CCD, or by
target, or raw data vs. quick look, etc. In the default layout,
the channel tabs are in the large middle pane, while the
plugins occupy the left and right panes. Other layouts are possible, by
simply changing a table used in the startup script.

Ginga distinguishes between two types of plugin: global and local.
Global plugins are used where the functionality is generally enabled
during the entire session with the viewer and where the plugin is active
no matter which channel is currently under interaction with the user.
Examples of global plugins include a panning view (a small, bird’s-eye
view of the image that shows a panning rectangle and allows graphical
positioning of the pan region), a zoomed view (that shows an enlarged
cutout of the area currently under the cursor), informational displays
about world coordinates, FITS headers, thumbnails, etc. Figure
Two global plugins: Pan (top) and Info (bottom), shown sharing a tab. shows an example of two global plugins occupying a notebook tab.

[image: ../_images/global_plugin1.png]
Two global plugins: Pan (top) and Info (bottom), shown sharing a tab.

Local plugins are used for modal operations with images in specific
channels. For example, the Pick plugin is used to perform stellar
evaluation of objects, finding the center of the object and giving
informational readings of the exact celestial coordinates, image
quality, etc. The Pick plugin is only visible while the user has it
open, and does not capture the mouse actions unless the channel it is
operating on is selected. Thus one can have two different Pick
operations going on concurrently on two different channels, for example,
or a Pick operation in a camera channel, and a Cuts (line cuts)
operation on a spectrograph channel.
Figure The Pick local plugin, shown occupying a tab. shows an example of the Pick local plugin occupying a
notebook tab.

[image: ../_images/local_plugin1.png]
The Pick local plugin, shown occupying a tab.

Anatomy of a Local Ginga Plugin

Let’s take a look at a local plugin to understand the API for
interfacing to the Ginga shell. In Listing 2, we show a stub for a
local plugin.

from ginga import GingaPlugin

class MyPlugin(GingaPlugin.LocalPlugin):

 def __init__(self, fv, fitsimage):
 super(MyPlugin, self).__init__(fv, fitsimage)

 def build_gui(self, container):
 pass

 def start(self):
 pass

 def stop(self):
 pass

 def pause(self):
 pass

 def resume(self):
 pass

 def redo(self):
 pass

 def __str__(self):
 return 'myplugin'

A little more fleshed out example: MyLocalPlugin

This is a skeleton for a local plugin. It is also good example of
something that actually runs and can be copied as a template for a local
plugin. This plugin is distributed with the Ginga package and can be
loaded and invoked from a terminal:

$ ginga –plugins=MyLocalPlugin –loglevel=20 –log=/tmp/ginga.log

The plugin will be accessible via the “Operation” button in the Plugin
Manager bar.

from ginga import GingaPlugin
from ginga.misc import Widgets

import any other modules you want here--it's a python world!

class MyLocalPlugin(GingaPlugin.LocalPlugin):

 def __init__(self, fv, fitsimage):
 """
 This method is called when the plugin is loaded for the first
 time. ``fv`` is a reference to the Ginga (reference viewer) shell
 and ``fitsimage`` is a reference to the specific ImageViewCanvas
 object associated with the channel on which the plugin is being
 invoked.
 You need to call the superclass initializer and then do any local
 initialization.
 """
 super(MyLocalPlugin, self).__init__(fv, fitsimage)

 # your local state and initialization code goes here

 def build_gui(self, container):
 """
 This method is called when the plugin is invoked. It builds the
 GUI used by the plugin into the widget layout passed as
 ``container``.
 This method may be called many times as the plugin is opened and
 closed for modal operations. The method may be omitted if there
 is no GUI for the plugin.

 This specific example uses the GUI widget set agnostic wrappers
 to build the GUI, but you can also just as easily use explicit
 toolkit calls here if you only want to support one widget set.
 """
 top = Widgets.VBox()
 top.set_border_width(4)

 # this is a little trick for making plugins that work either in
 # a vertical or horizontal orientation. It returns a box container,
 # a scroll widget and an orientation ('vertical', 'horizontal')
 vbox, sw, orientation = Widgets.get_oriented_box(container)
 vbox.set_border_width(4)
 vbox.set_spacing(2)

 # Take a text widget to show some instructions
 self.msgFont = self.fv.getFont("sansFont", 12)
 tw = Widgets.TextArea(wrap=True, editable=False)
 tw.set_font(self.msgFont)
 self.tw = tw

 # Frame for instructions and add the text widget with another
 # blank widget to stretch as needed to fill emp
 fr = Widgets.Frame("Instructions")
 vbox2 = Widgets.VBox()
 vbox2.add_widget(tw)
 vbox2.add_widget(Widgets.Label(''), stretch=1)
 fr.set_widget(vbox2)
 vbox.add_widget(fr, stretch=0)

 # Add a spacer to stretch the rest of the way to the end of the
 # plugin space
 spacer = Widgets.Label('')
 vbox.add_widget(spacer, stretch=1)

 # scroll bars will allow lots of content to be accessed
 top.add_widget(sw, stretch=1)

 # A button box that is always visible at the bottom
 btns = Widgets.HBox()
 btns.set_spacing(3)

 # Add a close button for the convenience of the user
 btn = Widgets.Button("Close")
 btn.add_callback('activated', lambda w: self.close())
 btns.add_widget(btn, stretch=0)
 btns.add_widget(Widgets.Label(''), stretch=1)
 top.add_widget(btns, stretch=0)

 # Add our GUI to the container
 container.add_widget(top, stretch=1)
 # NOTE: if you are building a GUI using a specific widget toolkit
 # (e.g. Qt) GUI calls, you need to extract the widget or layout
 # from the non-toolkit specific container wrapper and call on that
 # to pack your widget, e.g.:
 #cw = container.get_widget()
 #cw.addWidget(widget, stretch=1)

 def close(self):
 """
 Example close method. You can use this method and attach it as a
 callback to a button that you place in your GUI to close the plugin
 as a convenience to the user.
 """
 chname = self.fv.get_channel_name(self.fitsimage)
 self.fv.stop_local_plugin(chname, str(self))
 return True

 def start(self):
 """
 This method is called just after ``build_gui()`` when the plugin
 is invoked. This method may be called many times as the plugin is
 opened and closed for modal operations. This method may be omitted
 in many cases.
 """
 self.tw.set_text("""This plugin doesn't do anything interesting.""")
 self.resume()

 def pause(self):
 """
 This method is called when the plugin loses focus.
 It should take any actions necessary to stop handling user
 interaction events that were initiated in ``start()`` or
 ``resume()``.
 This method may be called many times as the plugin is focused
 or defocused. It may be omitted if there is no user event handling
 to disable.
 """
 pass

 def resume(self):
 """
 This method is called when the plugin gets focus.
 It should take any actions necessary to start handling user
 interaction events for the operations that it does.
 This method may be called many times as the plugin is focused or
 defocused. The method may be omitted if there is no user event
 handling to enable.
 """
 pass

 def stop(self):
 """
 This method is called when the plugin is stopped.
 It should perform any special clean up necessary to terminate
 the operation. The GUI will be destroyed by the plugin manager
 so there is no need for the stop method to do that.
 This method may be called many times as the plugin is opened and
 closed for modal operations, and may be omitted if there is no
 special cleanup required when stopping.
 """
 pass

 def redo(self):
 """
 This method is called when the plugin is active and a new
 image is loaded into the associated channel. It can optionally
 redo the current operation on the new image. This method may be
 called many times as new images are loaded while the plugin is
 active. This method may be omitted.
 """
 pass

 def __str__(self):
 """
 This method should be provided and should return the lower case
 name of the plugin.
 """
 return 'mylocalplugin'

The instance variables “fv” and “fitsimage” will be assigned by the
superclass initializer to self.fv and self.fitsimage–these are the
reference viewer “shell” and the ginga display object respectively.
To interact with the viewer you will be calling methods on one or both
of these objects.

The best way to get a feel for these APIs is to look at the source of
one of the many plugins distributed with Ginga. Most of them are not
very long or complex. Also, a plugin can include any Python
packages or modules that it wants and programming one is essentially
similar to writing any other Python program.

Launching and Debugging Your Plugin

The easiest way to start out is to create a plugins directory under your
ginga configuration area. In a terminal:

$ mkdir $HOME/.ginga/plugins

Put your plugin in there (a good one to start with is to modify the
MyLocalPlugin example that comes with Ginga):

$ cd …/ginga/examples/reference-viewer
$ cp MyLocalPlugin.py $HOME/.ginga/plugins/MyPlugin.py

To load it when the reference viewer starts (and add some logging to stderr
as well as to a file):

$ ginga –plugins=MyPlugin –loglevel=20 –stderr –log=/tmp/ginga.log

To start the plugin from within the reference viewer, use the Plugin
Manager bar just below the color and readout bars. Use the “Operation”
menu to select your plugin and it should be launched in the right panel.

If you don’t see the name of your plugin in the Operation menu, then
there was probably an error trying to load it. Examine the log and
search for the name of your plugin–you should find some error message
associated with it.

If you select your plugin from the menu, but it doesn’t launch a GUI,
there may be a problem or error in the plugin file. Again, examine the
log and search for the name of your plugin–you should find some error
message associated with it. It may help for you to add some debugging
messages to your plugin (either using self.logger.debug(“…”) or simple
print statements to stdout) to gauge the progress of building the gui and
plugin starting.

If the plugin launches, but encounters an error building the GUI, it
should show some error messages (and probably a stack trace) in
placeholders in the right panel in the container where it tried to build
the GUI or possibly under the Errors tab.

Note

Ginga has a feature for quickly reloading plugins to
facilitate rapid debugging cycles. If it is not already
running, start the “Command” plugin
from the “Plugins” menu in the menu bar. If your plugin
launched (but has some error), make sure you have closed your
plugin by right clicking (or Control + click on Mac touchpad)
on the small box representing your plugin in the Plugin
Manager bar and selecting “Stop”. In the Command plugin, use
the command “reload_local <plugin_name>”–this will reload the
python module representing your plugin and you should be able
to immediately restart it using the Plugin Manager bar as
described above (if the plugin is of the global plugin
variety, use the command “reload_global” instead).

If you have edited third party modules that are included in
the plugin, this will not be enough to pick up those changes.

A more complex example: The Ruler Plugin

Finally, in Listing 3 we show a completed plugin for Ruler. The
purpose of this plugin to draw triangulation (distance measurement)
rulers on the image. For reference, you may want to refer to the ruler
shown in The Ruler local plugin GUI, shown occupying a tab..

[image: ../_images/ruler_plugin.png]
The Ruler local plugin GUI, shown occupying a tab.

#
Ruler.py -- Ruler plugin for Ginga reference viewer
#
from ginga import GingaPlugin
from ginga.gw import Widgets

class Ruler(GingaPlugin.LocalPlugin):

 def __init__(self, fv, fitsimage):
 # superclass defines some variables for us, like logger
 super(Ruler, self).__init__(fv, fitsimage)

 self.rulecolor = 'green'
 self.layertag = 'ruler-canvas'
 self.ruletag = None

 self.dc = fv.getDrawClasses()
 canvas = self.dc.DrawingCanvas()
 canvas.enable_draw(True)
 canvas.enable_edit(True)
 canvas.set_drawtype('ruler', color='cyan')
 canvas.set_callback('draw-event', self.wcsruler)
 canvas.set_callback('draw-down', self.clear)
 canvas.set_callback('edit-event', self.edit_cb)
 canvas.set_draw_mode('draw')
 canvas.set_surface(self.fitsimage)
 canvas.register_for_cursor_drawing(self.fitsimage)
 canvas.name = 'Ruler-canvas'
 self.canvas = canvas

 self.w = None
 self.unittypes = ('arcmin', 'degrees', 'pixels')
 self.units = 'arcmin'

 def build_gui(self, container):
 top = Widgets.VBox()
 top.set_border_width(4)

 vbox, sw, orientation = Widgets.get_oriented_box(container)
 vbox.set_border_width(4)
 vbox.set_spacing(2)

 self.msgFont = self.fv.getFont("sansFont", 12)
 tw = Widgets.TextArea(wrap=True, editable=False)
 tw.set_font(self.msgFont)
 self.tw = tw

 fr = Widgets.Expander("Instructions")
 fr.set_widget(tw)
 vbox.add_widget(fr, stretch=0)

 fr = Widgets.Frame("Ruler")

 captions = (('Units:', 'label', 'Units', 'combobox'),
)
 w, b = Widgets.build_info(captions, orientation=orientation)
 self.w = b

 combobox = b.units
 for name in self.unittypes:
 combobox.append_text(name)
 index = self.unittypes.index(self.units)
 combobox.set_index(index)
 combobox.add_callback('activated', lambda w, idx: self.set_units())

 fr.set_widget(w)
 vbox.add_widget(fr, stretch=0)

 mode = self.canvas.get_draw_mode()
 hbox = Widgets.HBox()
 btn1 = Widgets.RadioButton("Draw")
 btn1.set_state(mode == 'draw')
 btn1.add_callback('activated', lambda w, val: self.set_mode_cb('draw', val))
 btn1.set_tooltip("Choose this to draw a ruler")
 self.w.btn_draw = btn1
 hbox.add_widget(btn1)

 btn2 = Widgets.RadioButton("Edit", group=btn1)
 btn2.set_state(mode == 'edit')
 btn2.add_callback('activated', lambda w, val: self.set_mode_cb('edit', val))
 btn2.set_tooltip("Choose this to edit a ruler")
 self.w.btn_edit = btn2
 hbox.add_widget(btn2)

 hbox.add_widget(Widgets.Label(''), stretch=1)
 vbox.add_widget(hbox, stretch=0)

 spacer = Widgets.Label('')
 vbox.add_widget(spacer, stretch=1)

 top.add_widget(sw, stretch=1)

 btns = Widgets.HBox()
 btns.set_spacing(3)

 btn = Widgets.Button("Close")
 btn.add_callback('activated', lambda w: self.close())
 btns.add_widget(btn, stretch=0)
 btns.add_widget(Widgets.Label(''), stretch=1)
 top.add_widget(btns, stretch=0)

 container.add_widget(top, stretch=1)

 def set_units(self):
 index = self.w.units.get_index()
 units = self.unittypes[index]
 self.canvas.set_drawtype('ruler', color='cyan', units=units)

 if self.ruletag is not None:
 obj = self.canvas.getObjectByTag(self.ruletag)
 if obj.kind == 'ruler':
 obj.units = units
 self.canvas.redraw(whence=3)
 return True

 def close(self):
 chname = self.fv.get_channelName(self.fitsimage)
 self.fv.stop_local_plugin(chname, str(self))
 return True

 def instructions(self):
 self.tw.set_text("""Draw (or redraw) a line with the cursor.

Display the Zoom tab at the same time to precisely see detail while drawing.""")

 def start(self):
 self.instructions()
 # start ruler drawing operation
 p_canvas = self.fitsimage.get_canvas()
 if not p_canvas.has_object(self.canvas):
 p_canvas.add(self.canvas, tag=self.layertag)

 self.canvas.delete_all_objects()
 self.resume()

 def pause(self):
 self.canvas.ui_setActive(False)

 def resume(self):
 self.canvas.ui_setActive(True)
 self.fv.showStatus("Draw a ruler with the right mouse button")

 def stop(self):
 # remove the canvas from the image
 p_canvas = self.fitsimage.get_canvas()
 try:
 p_canvas.delete_object_by_tag(self.layertag)
 except:
 pass
 self.canvas.ui_setActive(False)
 self.fv.showStatus("")

 def redo(self):
 obj = self.canvas.get_object_by_tag(self.ruletag)
 if obj.kind != 'ruler':
 return True
 # redraw updates ruler measurements
 self.canvas.redraw(whence=3)

 def clear(self, canvas, button, data_x, data_y):
 self.canvas.delete_all_objects()
 self.ruletag = None
 return False

 def wcsruler(self, surface, tag):
 obj = self.canvas.get_object_by_tag(tag)
 if obj.kind != 'ruler':
 return True
 # remove the old ruler
 try:
 self.canvas.delete_object_by_tag(self.ruletag)
 except:
 pass

 # change some characteristics of the drawn image and
 # save as the new ruler
 self.ruletag = tag
 obj.color = self.rulecolor
 obj.cap = 'ball'
 self.canvas.redraw(whence=3)

 def edit_cb(self, canvas, obj):
 self.redo()
 return True

 def edit_select_ruler(self):
 if self.ruletag is not None:
 obj = self.canvas.get_object_by_tag(self.ruletag)
 self.canvas.edit_select(obj)
 else:
 self.canvas.clear_selected()
 self.canvas.update_canvas()

 def set_mode_cb(self, mode, tf):
 if tf:
 self.canvas.set_draw_mode(mode)
 if mode == 'edit':
 self.edit_select_ruler()
 return True

 def __str__(self):
 return 'ruler'

#END

This plugin shows a standard design pattern typical to local plugins.
Often one is wanting to draw or plot something on top of the image
below. The ImageViewCanvas widget used by Ginga allows this to be
done very cleanly and conveniently by adding a DrawingCanvas
object to the image and drawing on that. Canvases can be layered on top
of each other in a manner analogous to “layers” in an image editing
program. Since each local plugin maintains it’s own canvas, it is very
easy to encapsulate the logic for drawing on and dealing with the
objects associated with that plugin. We use this technique in the Ruler
plugin. When the plugin is loaded (refer to __init__() method), it
creates a canvas, enables drawing on it, sets the draw type and registers a
callback for drawing events. When start() is called it adds that canvas
to the widget. When stop() is called it removes the canvas from the
widget (but does not destroy the canvas). pause() disables user
interaction on the canvas and resume() reenables that interaction.
redo() simply redraws the ruler with new measurements taken from any new
image that may have been loaded. In the __init__() method you will
notice a setSurface() call that associates this canvas with a
ImageView-based widget–this is the key for the canvas to utilize WCS
information for correct plotting.
All the other methods shown are support methods for doing the ruler
drawing operation and interacting with the plugin GUI.

Writing a Global Plugin

The last example was focused on writing a local plugin. Global plugins
employ a nearly identical API to that shown in Listing 2, except that
the constructor does not take a fitsimage parameter.
pause() and resume() can safely be omitted. Like local plugins,
build_gui() can be omitted if there is no GUI associated with the plugin.

A template: MyGlobalPlugin

This is a skeleton for a global plugin, and serves as a decent example of
something that can be copied as a template for a global plugin.
This plugin is distributed with the Ginga package and can be loaded and
invoked from a terminal:

$ ginga –modules=MyGlobalPlugin –loglevel=20 –log=/tmp/ginga.log

The plugin will be started at program startup and can be seen in the
“MyGlobalPlugin” tab in the right panel. Watch the status message as
you create new channels, delete channels or load images into channels.

from ginga import GingaPlugin
from ginga.misc import Widgets

import any other modules you want here--it's a python world!

class MyGlobalPlugin(GingaPlugin.GlobalPlugin):

 def __init__(self, fv):
 """
 This method is called when the plugin is loaded for the first
 time. ``fv`` is a reference to the Ginga (reference viewer) shell.

 You need to call the superclass initializer and then do any local
 initialization.
 """
 super(MyGlobalPlugin, self).__init__(fv)

 # Your initialization here

 # Create some variables to keep track of what is happening
 # with which channel
 self.active = None

 # Subscribe to some interesting callbacks that will inform us
 # of channel events. You may not need these depending on what
 # your plugin does
 fv.set_callback('add-channel', self.add_channel)
 fv.set_callback('delete-channel', self.delete_channel)
 fv.set_callback('active-image', self.focus_cb)

 def build_gui(self, container):
 """
 This method is called when the plugin is invoked. It builds the
 GUI used by the plugin into the widget layout passed as
 ``container``.
 This method could be called several times if the plugin is opened
 and closed. The method may be omitted if there is no GUI for the
 plugin.

 This specific example uses the GUI widget set agnostic wrappers
 to build the GUI, but you can also just as easily use explicit
 toolkit calls here if you only want to support one widget set.
 """
 top = Widgets.VBox()
 top.set_border_width(4)

 # this is a little trick for making plugins that work either in
 # a vertical or horizontal orientation. It returns a box container,
 # a scroll widget and an orientation ('vertical', 'horizontal')
 vbox, sw, orientation = Widgets.get_oriented_box(container)
 vbox.set_border_width(4)
 vbox.set_spacing(2)

 # Take a text widget to show some instructions
 self.msgFont = self.fv.getFont("sansFont", 12)
 tw = Widgets.TextArea(wrap=True, editable=False)
 tw.set_font(self.msgFont)
 self.tw = tw

 # Frame for instructions and add the text widget with another
 # blank widget to stretch as needed to fill emp
 fr = Widgets.Frame("Status")
 vbox2 = Widgets.VBox()
 vbox2.add_widget(tw)
 vbox2.add_widget(Widgets.Label(''), stretch=1)
 fr.set_widget(vbox2)
 vbox.add_widget(fr, stretch=0)

 # Add a spacer to stretch the rest of the way to the end of the
 # plugin space
 spacer = Widgets.Label('')
 vbox.add_widget(spacer, stretch=1)

 # scroll bars will allow lots of content to be accessed
 top.add_widget(sw, stretch=1)

 # A button box that is always visible at the bottom
 btns = Widgets.HBox()
 btns.set_spacing(3)

 # Add a close button for the convenience of the user
 btn = Widgets.Button("Close")
 btn.add_callback('activated', lambda w: self.close())
 btns.add_widget(btn, stretch=0)
 btns.add_widget(Widgets.Label(''), stretch=1)
 top.add_widget(btns, stretch=0)

 # Add our GUI to the container
 container.add_widget(top, stretch=1)
 # NOTE: if you are building a GUI using a specific widget toolkit
 # (e.g. Qt) GUI calls, you need to extract the widget or layout
 # from the non-toolkit specific container wrapper and call on that
 # to pack your widget, e.g.:
 #cw = container.get_widget()
 #cw.addWidget(widget, stretch=1)

 def get_channel_info(self, fitsimage):
 chname = self.fv.get_channelName(fitsimage)
 chinfo = self.fv.get_channelInfo(chname)
 return chinfo

 def set_info(self, text):
 self.tw.set_text(text)

 # CALLBACKS

 def add_channel(self, viewer, chinfo):
 """
 Callback from the reference viewer shell when a channel is added.
 """
 self.set_info("Channel '%s' has been added" % (
 chinfo.name))
 # Register for new image callbacks on this channel's canvas
 fitsimage = chinfo.fitsimage
 fitsimage.set_callback('image-set', self.new_image_cb)

 def delete_channel(self, viewer, chinfo):
 """
 Callback from the reference viewer shell when a channel is deleted.
 """
 self.set_info("Channel '%s' has been deleted" % (
 chinfo.name))
 return True

 def focus_cb(self, viewer, fitsimage):
 """
 Callback from the reference viewer shell when the focus changes
 between channels.
 """
 chinfo = self.get_channel_info(fitsimage)
 chname = chinfo.name

 if self.active != chname:
 # focus has shifted to a different channel than our idea
 # of the active one
 self.active = chname
 self.set_info("Focus is now in channel '%s'" % (
 self.active))
 return True

 def new_image_cb(self, fitsimage, image):
 """
 Callback from the reference viewer shell when a new image has
 been added to a channel.
 """
 chinfo = self.get_channel_info(fitsimage)
 chname = chinfo.name

 # Only update our GUI if the activity is in the focused
 # channel
 if self.active == chname:
 imname = image.get('name', 'NONAME')
 self.set_info("A new image '%s' has been added to channel %s" % (
 imname, chname))
 return True

 def start(self):
 """
 This method is called just after ``build_gui()`` when the plugin
 is invoked. This method could be called more than once if the
 plugin is opened and closed. This method may be omitted
 in many cases.
 """
 pass

 def stop(self):
 """
 This method is called when the plugin is stopped.
 It should perform any special clean up necessary to terminate
 the operation. This method could be called more than once if
 the plugin is opened and closed, and may be omitted if there is no
 special cleanup required when stopping.
 """
 pass

 def close(self):
 self.fv.stop_global_plugin(str(self))
 return True

 def __str__(self):
 """
 This method should be provided and should return the lower case
 name of the plugin.
 """
 return 'myglobalplugin'

Writing Separately Installable Plugins

If you want to distribute your plugin(s) as a separately installable
package and have Ginga discover them when it starts up, you can use the
Ginga Plugin Template [https://github.com/ejeschke/ginga-plugin-template]
to write your own package that installs plugins.

You can include as many plugins in your package as you want.
You write your plugins in exactly the same way as described above, and
they can be either global or local. For details, clone the repo at the
link above and follow the directions in the README.

Using the Basic Ginga Viewer Object in Python Programs

	Module Index

The core design principle of the Ginga project is to make it possible to
easily build powerful image viewers in Python with many possible GUI
toolkits.

This chapter is for developers who want to use only the Ginga rendering
class in a program of their own design (not customizing the reference
viewer).

Using the basic rendering class in new programs

Ginga basically follows the Model-View-Controller (MVC) design pattern,
that is described in more detail in the chapter on internals
(see Ginga Internals).
The “view” classes are rooted in the base class ImageView.
Ginga supports backends for different widget sets through various
subclasses of this class.

Typically, a developer picks a GUI toolkit that has a supported backend
(Gtk 2/3, Qt 4/5, Tk, matplotlib, HTML5 canvas) and writes a GUI program
using that widget set with the typical Python toolkit bindings and API.
Where they want a image view pane they instantiate the appropriate
subclass of ImageView, and using the get_widget() call extract
the native widget and insert it into the GUI layout. A reference should
also be kept to the view object, as this is typically what you will be
calling methods on to control the viewer.

Ginga does not create any additional GUI components beyond the image
pane itself, however it does provide a standard set of keyboard and
mouse bindings on the host widget that can be enabled, disabled or
changed. The user interface bindings are configurable via a pluggable
Bindings class which constitutes the “controller” part of the MVC
design. There are a plethora of callbacks that can be registered,
allowing the user to create their own custom user interface for
manipulating the view. Of course, the developer can add many different
GUI widgets from the selected toolkit to supplement or replace these
built in controls.

[image: ../_images/barebonesviewer_qt.png]
A simple, “bare bones” FITS viewer written in Qt.

Listing 1 shows a code listing for a simple graphical FITS
viewer built using the subclass ImageViewCanvas from the module
ImageViewCanvasQt (screenshot in Figure A simple, “bare bones” FITS viewer written in Qt.) written in
around 100 or so lines of Python. It creates a window containing an
image view and two buttons. This example will open FITS files dragged
and dropped on the image window or via a dialog popped up when clicking
the “Open File” button.

#
example1_qt.py -- Simple FITS viewer using the Ginga toolkit and Qt widgets.
#
import sys, os
import logging

from ginga import AstroImage
from ginga.misc import log
from ginga.qtw.QtHelp import QtGui, QtCore
from ginga.qtw.ImageViewCanvasQt import ImageViewCanvas

class FitsViewer(QtGui.QMainWindow):

 def __init__(self, logger):
 super(FitsViewer, self).__init__()
 self.logger = logger

 fi = ImageViewCanvas(self.logger, render='widget')
 fi.enable_autocuts('on')
 fi.set_autocut_params('zscale')
 fi.enable_autozoom('on')
 fi.set_callback('drag-drop', self.drop_file)
 fi.set_bg(0.2, 0.2, 0.2)
 fi.ui_setActive(True)
 fi.enable_draw(False)
 self.fitsimage = fi

 bd = fi.get_bindings()
 bd.enable_all(True)

 w = fi.get_widget()
 w.resize(512, 512)

 vbox = QtGui.QVBoxLayout()
 vbox.setContentsMargins(QtCore.QMargins(2, 2, 2, 2))
 vbox.setSpacing(1)
 vbox.addWidget(w, stretch=1)

 hbox = QtGui.QHBoxLayout()
 hbox.setContentsMargins(QtCore.QMargins(4, 2, 4, 2))

 wopen = QtGui.QPushButton("Open File")
 wopen.clicked.connect(self.open_file)
 wquit = QtGui.QPushButton("Quit")
 wquit.clicked.connect(self.quit)

 hbox.addStretch(1)
 for w in (wopen, wquit):
 hbox.addWidget(w, stretch=0)

 hw = QtGui.QWidget()
 hw.setLayout(hbox)
 vbox.addWidget(hw, stretch=0)

 vw = QtGui.QWidget()
 self.setCentralWidget(vw)
 vw.setLayout(vbox)

 def load_file(self, filepath):
 image = AstroImage.AstroImage(logger=self.logger)
 image.load_file(filepath)
 self.fitsimage.set_image(image)
 self.setWindowTitle(filepath)

 def open_file(self):
 res = QtGui.QFileDialog.getOpenFileName(self, "Open FITS file",
 ".", "FITS files (*.fits)")
 if isinstance(res, tuple):
 fileName = res[0]
 else:
 fileName = str(res)
 if len(fileName) != 0:
 self.load_file(fileName)

 def drop_file(self, fitsimage, paths):
 fileName = paths[0]
 self.load_file(fileName)

 def quit(self, *args):
 self.logger.info("Attempting to shut down the application...")
 self.deleteLater()

def main(options, args):

 app = QtGui.QApplication(sys.argv)

 # ginga needs a logger.
 # If you don't want to log anything you can create a null logger by
 # using null=True in this call instead of log_stderr=True
 logger = log.get_logger("example1", log_stderr=True)

 w = FitsViewer(logger)
 w.resize(524, 540)
 w.show()
 app.setActiveWindow(w)
 w.raise_()
 w.activateWindow()

 if len(args) > 0:
 w.load_file(args[0])

 app.exec_()

if __name__ == '__main__':
 main(None, sys.argv[1:])

Looking at the constructor for this particular viewer, you can see where
we create a ImageViewCanvas object. On this object we enable automatic
cut levels (using the ‘zscale’ algorithm), configure it to auto zoom the
image to fit the window and set a callback function for files dropped on
the window. We extract the user-interface bindings with
get_bindings(), and on this object enable standard user interactive
controls for all the possible key and mouse operations.
We then extract the platform-specific widget (Qt-based, in this case) using
get_widget() and pack it into a Qt container along with a couple of
buttons to complete the viewer.

Scanning down the code a bit, we can see that whether by dragging and
dropping or via the click to open, we ultimately call the load_file()
method to get the data into the viewer. As shown, load_file creates
an AstroImage object (the “model” part of our MVC design). It then
passes this object to the viewer via the set_image() method.
AstroImage objects have methods for ingesting data via a file path, an
astropy.io.fits HDU or a bare Numpy data array.

Many of these sorts of examples for all supported backends are contained
in the examples directory in the source distribution.

For a list of many methods provided by the viewer object, click on the
module index link at the top of this chapter and then click on the link
for ImageViewBase.

Graphics plotting with Ginga

[image: ../_images/example2_screenshot.png]
An example of a ImageViewCanvas widget with graphical overlay.

An ImageViewCanvas actually combines a view with a canvas object (in
particular a DrawingCanvas object). You can get more detail about
canvases and the objects they support (see Ginga Canvas Graphics).
A variety of graphical shapes are available, and plotted objects scale,
transform and rotate seamlessly with the viewer.

Rendering into Matplotlib Figures

Ginga can also render directly into a Matplotlib Figure, which opens up
possibilities for overplotting beyond the limited capabilities of the
Ginga canvas items. See the examples under “examples/matplotlib”
for ideas, particularly “example4_mpl.py”.

Rendering into HTML5 canvases

Ginga can render onto HTML5 canvases displayed in a web browser. This
opens up interesting possibilities for server-based remote viewing
tools. See the examples under “examples/pg”, particularly “example2_pg.py”.

Writing widget toolkit independent code

You can write code that allows the widget set to be abstracted by
Ginga’s widget wrappers. This is the same technique used to allow the
reference viewer to switch between supported toolkits using the “-t”
command line option. Currently only Qt (4/5), Gtk (2/3), and HTML5 (to a
more limited degree) are supported, and there are some limitations
compared to developing using a native toolkit directly. Nevertheless,
the ability to target different platforms just by changing a command
line option is a very interesting proposition.

See the examples under “examples/gw”, particularly “example2.py”.

Ginga Internals

This chapter explains the secret inner workings of Ginga and its classes
so that you can subclass them and use them in your own applications.

Introduction

Ginga uses a version of the Model-View-Controller
design pattern [http://en.wikipedia.org/wiki/Model_view_controller].
The MVC pattern spells out a division of responsibilities and
encapsulation where the Model provides various ways to access and
interface to the data, the View provides ways to display the data and
the Controller provides the methods and user interface hooks for
controlling the view.

The Model

[image: ../_images/class_structure_astroimage.png]
Hierarchy of Ginga AstroImage class

The Model classes are rooted in the base class BaseImage. The basic
interface to the data is expected to be a Numpy-like array object that is
obtained via the get_data() method on the model. It also provides
methods for obtaining scaled, cutouts and transformed views of the data,
and methods for getting and setting key-value like metadata.

There are two subclasses defined on BaseImage: RGBImage and
AstroImage. RGBImage is used for displaying 3 channel RGB type
images such as JPEG, TIFF, PNG, etc. AstroImage is the subclass used to
represent astronomical images and its organization is shown in
Figure Hierarchy of Ginga AstroImage class. It has two delegate objects devoted to
handling World Coordinate System transformations and file IO.
There is also a mixin class, LayerImage that can be used to create
layered images with alpha compositing on each layer.

New models can be created, subclassing from BaseImage or AstroImage.
As long as the model
duck types [http://en.wikipedia.org/wiki/Duck_typing] like a BaseImage
it can be loaded into a view object with the set_image() method.
AstroImage provides convenience methods for accessing WCS information
that may be necessary when using the model in canvas subclasses of a
View that allow graphics drawing.

The View

[image: ../_images/class_structure_viewer.png]
Class structure of Ginga basic widget viewer

Figure Class structure of Ginga basic widget viewer shows the class inheritance of the
ImageViewZoom class, which is a typical end class to use in a program if
one is not planning to do any graphical overplotting. The figure key
indicates the base class verses the widget specific classes.

The View classes are rooted in the base class ImageView, which
handles image display, scaling (zooming), panning, manual cut levels,
auto cut levels, color mapping, transformations, and rotation.
The ImageView is quite powerful compared to base classes in most
inheritance designs, as it actually renders the view all the way out to
RGB image planes in the appropriate sizes for the widget target window.
Ginga supports “backends” for different widget sets (Gtk, Qt, Tk,
etc.) through various subclasses of this base class, which do the actual
painting of the resulting RGB image into a widget in the native widget set.

In this example, ImageViewXYZ is a class that renders to a native
widget in the “XYZ” toolkit. ImageViewEvent adds event handlers for
various pointing and keyboard events, but without connecting them to any
particular handling scheme. Finally, ImageViewZoom provides a
concrete implementation of event handling by connecting the handlers in
the ImageViewEvent class with the logic in the BindingMapper and
Bindings delegate objects as will as some logic in the UIMixin
class. This event handling scheme is described in more detail in the
section on the Controller. With this layered class construction, it is
possible to minimize the widget specific code and reuse a large amount
of code across widget sets and platforms.
Because the vast majority of work is done in the base class, and the
outer classes simply inherit the widget-specific ones and mix in the
others, it is a fairly simple matter to port the basic Ginga
functionality to a new widget set. All that is required is that the new
widget set have some kind of native widget that supports painting an RGB
image (like a canvas or image widget) and a way to register for user
interaction events on that widget.

The Controller

The control interface is a combination of methods on the view object and
a pluggable Bindings class which handles the mapping of user input
events such as mouse, gesture and keystrokes into commands on the view.
There are many callback functions that can be registered,
allowing the user to create their own custom user interface for
manipulating the view.

Graphics on Ginga

[image: ../_images/class_structure_drawingcanvas.png]
Class structure of Ginga DrawingCanvas class.

Ginga’s graphics are all rendered from objects placed on a
DrawingCanvas. All objects that can be put on a DrawingCanvas
are rooted in the CanvasObject type (including DrawingCanvas
itself).

Miscellaneous Topics

I want to use my own World Coordinate System!

No problem. Ginga encapsulates the WCS behind a pluggable object used
in the AstroImage class. Your WCS should implement this abstract class:

def MyWCS(object):
 def __init__(self, logger):
 self.logger = logger

 def get_keyword(self, key):
 return self.header[key]

 def get_keywords(self, *args):
 return map(lambda key: self.header[key], args)

 def load_header(self, header, fobj=None):
 pass

 def pixtoradec(self, idxs, coords='data'):
 # calculate ra_deg, dec_deg
 return (ra_deg, dec_deg)

 def radectopix(self, ra_deg, dec_deg, coords='data', naxispath=None):
 # calculate x, y
 return (x, y)

 def pixtosystem(self, idxs, system=None, coords='data'):
 return (deg1, deg2)

 def datapt_to_wcspt(self, datapt, coords='data', naxispath=None):
 return [[ra_deg_0, dec_deg_0], [ra_deg_1, dec_deg_1], ...,
 [ra_deg_n, dec_deg_n]]

 def wcspt_to_datapt(self, wcspt, coords='data', naxispath=None):
 return [[x0, y0], [x1, y1], ..., [xn, yn]]

To use your WCS with Ginga create your images like this:

from ginga.AstroImage import AstroImage
AstroImage.set_wcsClass(MyWCS)
...

image = AstroImage()
...
view.set_image(image)

or you can override the WCS on a case-by-case basis:

from ginga.AstroImage import AstroImage
...

image = AstroImage(wcsclass=MyWCS)
...
view.set_image(image)

You could also subclass AstroImage or BaseImage and implement your own
WCS handling. There are certain methods in AstroImage used for graphics
plotting and plugins, however, so these would need to be supported if
you expect the same functionality.

I want to use my own file storage format, not FITS!

No problem. Ginga encapsulates the io behind a pluggable object used
in the AstroImage class. You should implement this abstract class:

class MyIOHandler(object):
 def __init__(self, logger):
 self.logger = logger

 def register_type(self, name, klass):
 self.factory_dict[name.lower()] = klass

 def load_file(self, filespec, numhdu=None, dstobj=None, **kwdargs):
 # create object of the appropriate type, usually
 # an AstroImage or AstroTable, by looking up the correct
 # class in self.factory_dict, under the keys 'image' or
 # 'table'
 return dstobj

 def save_as_file(self, path, data, header, **kwdargs):
 pass

The save_as_file method is optional if you will never need to save
a modified file from Ginga.
To use your io handler with Ginga create your images like this:

from ginga.AstroImage import AstroImage
AstroImage.set_ioClass(MyIOHandler)
...

image = AstroImage()
image.load_file(path)
...
view.set_image(image)

or you can override the io handler on a case-by-case basis:

from ginga.AstroImage import AstroImage
...

image = AstroImage(ioclass=MyIOHandler)
image.load_file(path)
...
view.set_image(image)

You could also subclass AstroImage or BaseImage and implement your own
I/O handling.

Note

Both naxispath and numhdu are valid keyword arguments to
the load_file() method.

You probably want to treat numhdu as a kind of index into
your file, similarly to the meaning within a FITS file
(although you are free also to ignore it!).

If the user passes a valid numhdu (whatever that means to
your load_file method) you simply return that value that they
passed as the middle element of the return tuple. If they
passed None (default), then you return the index you used
to access the data area that you loaded.

You probably want to treat naxispath as any kind of path
that you would need to take to navigate through your kind of
data area selected by numhdu (above). This is usually used to
describe the path through a data cube of N-dimensionality to
reach a 2D slice.

If the user passes a valid naxispath (whatever that means to
your load_file method) you simply return that value that they
passed. If they passed None (default), then you return
whatever path you used to access the data slice that you
returned.

Porting Ginga to a New Widget Set

[TBD]

Optimizing Ginga’s Performance

There are several ways to optimize the performance of certain aspects of
Ginga’s operation.

OpenCL Acceleration

Ginga includes support for OpenCL accelerated array operations for some
operations (e.g. rotation). This support is not enabled by default.

To enable OpenCL support, install the pyopencl module, e.g.:

$ pip install pyopencl

If you are building your own program using a ginga viewer widget, simply
enable the support by:

from ginga import trcalc
trcalc.use('opencl')

If you are using the reference viewer, you can add the command line
option --opencl to enable support.

Alternatively, you can add the following line to your Ginga general options configuration file
($HOME/.ginga/general.cfg):

use_opencl = True

Note

pyopencl may prompt you if it can’t figure out which device
is the obvious choice to use as for hardware acceleration. If
so, you can set the PYOPENCL_CTX variable to prevent being
prompted in the future.

Example of being prompted by pyopencl package:

$ ginga
NVIDIA: no NVIDIA devices found
Choose platform:
[0] <pyopencl.Platform 'Intel(R) OpenCL' at 0x2d95fd0>
[1] <pyopencl.Platform 'Clover' at 0x7f13f3ffcac0>
Choice [0]:
Set the environment variable PYOPENCL_CTX='' to avoid
being asked again.

OpenCv Acceleration

Ginga includes support for OpenCv accelerated operations (e.g. rotation
and rescaling). This support is not enabled by default.

To enable OpenCv support, install the python opencv module (you can
find it here [https://pypi.python.org/pypi/opencv-python]).

If you are building your own program using a ginga viewer widget, simply
enable the support by:

from ginga import trcalc
trcalc.use('opencv')

If you are using the reference viewer, you can add the command line
option --opencv to enable support.

Alternatively, you can add the following line to your Ginga general options configuration file
($HOME/.ginga/general.cfg):

use_opencv = True

numexpr Acceleration

Ginga can use the numexpr package to speed up rotations. However,
this is only used if the OpenCL and OpenCv optimizations are not being
used and the performance gain is not nearly as dramatic as with the
latter.

To enable numexpr acceleration, simply install the package, e.g.:

$ pip install numexpr

It will be automatically detected and used when appropriate.

Reference/API

ginga.canvas.CanvasMixin Module

Classes

	CanvasMixin()

	A CanvasMixin is combined with the CompoundMixin to make a tag-addressible canvas-like interface.

ginga.canvas.CanvasObject Module

Functions

	get_canvas_type(name)

	

	get_canvas_types()

	

	register_canvas_type(name, klass)

	

	register_canvas_types(klass_dict)

	

Classes

	CanvasObjectBase(**kwdargs)

	This is the abstract base class for a CanvasObject.

ginga.canvas.CompoundMixin Module

Classes

	CompoundMixin()

	A CompoundMixin is a mixin class that makes an object that is an aggregation of other objects.

ginga.canvas.coordmap Module

Classes

	NativeMapper(viewer)

	A coordinate mapper that maps to the viewer’s canvas in the viewer’s canvas coordinates.

	WindowMapper(viewer)

	A coordinate mapper that maps to the viewer in ‘window’ coordinates.

	CartesianMapper(viewer)

	A coordinate mapper that maps to the viewer in Cartesian coordinates that do not scale (unlike DataMapper).

	DataMapper(viewer)

	A coordinate mapper that maps to the viewer in data coordinates.

	OffsetMapper(viewer, refobj)

	A coordinate mapper that maps to the viewer in data coordinates that are offsets relative to some other reference object.

	WCSMapper(viewer)

	A coordinate mapper that maps to the viewer in WCS coordinates.

ginga.canvas.DrawingMixin Module

Classes

	DrawingMixin()

	The DrawingMixin is a mixin class that adds drawing capability for some of the basic CanvasObject-derived types.

ginga.canvas.types.layer Module

Classes

	CompoundObject(*objects, **kwdargs)

	Compound object on a ImageViewCanvas.

	Canvas(*objects, **kwdargs)

	Class to handle canvas in Ginga.

	DrawingCanvas(**kwdargs)

	Drawing canvas.

Class Inheritance Diagram

 Inheritance diagram of ginga.canvas.types.layer.CompoundObject, ginga.canvas.types.layer.Canvas, ginga.canvas.types.layer.DrawingCanvas

ginga.ImageView Module

This module handles image viewers.

Classes

	ImageViewBase([logger, rgbmap, settings])

	An abstract base class for displaying images represented by Numpy data arrays.

ginga.rv.main Module

This module handles the main reference viewer.

Classes

	ReferenceViewer([layout])

	This class exists solely to be able to customize the reference viewer startup.

ginga.util.wcsmod Package

We are fortunate to have several possible choices for a python WCS package
compatible with Ginga: astlib, kapteyn, starlink and astropy.
kapteyn and astropy wrap Mark Calabretta’s “WCSLIB”, astLib wraps
Jessica Mink’s “wcstools”, and I’m not sure what starlink uses (their own?).

Note that astlib requires pyfits (or astropy) in order to create a WCS
object from a FITS header.

To force the use of one, do:

from ginga.util import wcsmod
wcsmod.use('kapteyn')

before you load any images. Otherwise Ginga will try to pick one for
you.

Note that you can register custom WCS types using:

from ginga.util.wcsmod.common import register_wcs
register_wcs('mywcs', MyWCSClass, list_of_coord_types)

Look at the implemented WCS wrappers for details.

ginga.util.wcs Module

This module handles calculations based on world coordinate system.

Functions

	hmsToDeg(h, m, s)

	Convert RA hours, minutes, seconds into an angle in degrees.

	dmsToDeg(sign, deg, min, sec)

	Convert dec sign, degrees, minutes, seconds into a signed angle in degrees.

	decTimeToDeg(sign_sym, deg, min, sec)

	Convert dec sign, degrees, minutes, seconds into a signed angle in degrees.

	degToHms(ra)

	Converts the ra (in degrees) to HMS three tuple.

	degToDms(dec[, isLatitude])

	Convert the dec, in degrees, to an (sign,D,M,S) tuple.

	arcsecToDeg(arcsec)

	Convert numeric arcseconds (aka DMS seconds) to degrees of arc.

	hmsStrToDeg(ra)

	Convert a string representation of RA into a float in degrees.

	dmsStrToDeg(dec)

	Convert a string representation of DEC into a float in degrees.

	raDegToString(ra_deg[, format])

	

	decDegToString(dec_deg[, format])

	

	trans_coeff(eq, x, y, z)

	This function is provided by MOKA2 Development Team (1996.xx.xx) and used in SOSS system.

	eqToEq2000(ra_deg, dec_deg, eq)

	Convert Eq to Eq 2000.

	get_xy_rotation_and_scale(header)

	CREDIT: See IDL code at http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT

	get_rotation_and_scale(header[, skew_threshold])

	Calculate rotation and CDELT.

	get_relative_orientation(image, ref_image)

	Computes the relative orientation and scale of an image to a reference image.

	simple_wcs(px_x, px_y, ra_deg, dec_deg, …)

	Calculate a set of WCS keywords for a 2D simple instrument FITS file with a ‘standard’ RA/DEC pixel projection.

	deg2fmt(ra_deg, dec_deg, format)

	Format coordinates.

	dispos(dra0, decd0, dra, decd)

	Compute distance and position angle solving a spherical triangle (no approximations).

	deltaStarsRaDecDeg1(ra1_deg, dec1_deg, …)

	Spherical triangulation.

	deltaStarsRaDecDeg2(ra1_deg, dec1_deg, …)

	

	get_starsep_RaDecDeg(ra1_deg, dec1_deg, …)

	Calculate separation.

	add_offset_radec(ra_deg, dec_deg, …)

	Algorithm to compute RA/Dec from RA/Dec base position plus tangent plane offsets.

	get_RaDecOffsets(ra1_deg, dec1_deg, ra2_deg, …)

	Calculate offset.

	lon_to_deg(lon)

	Convert longitude to degrees.

	lat_to_deg(lat)

	Convert latitude to degrees.

CanvasMixin

	
class ginga.canvas.CanvasMixin.CanvasMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A CanvasMixin is combined with the CompoundMixin to make a
tag-addressible canvas-like interface. This mixin should precede the
CompoundMixin in the inheritance (and so, method resolution) order.

Methods Summary

	add(obj[, tag, tagpfx, belowThis, redraw])

	

	deleteAllObjects([redraw])

	

	deleteObject(obj[, redraw])

	

	deleteObjectByTag(tag[, redraw])

	

	deleteObjects(objects[, redraw])

	

	deleteObjectsByTag(tags[, redraw])

	

	delete_all_objects([redraw])

	

	delete_object(obj[, redraw])

	

	delete_object_by_tag(tag[, redraw])

	

	delete_objects(objects[, redraw])

	

	delete_objects_by_tag(tags[, redraw])

	

	getObjectByTag(tag)

	

	getObjectsByTagpfx(tagpfx)

	

	getTagsByTagpfx(tagpfx)

	

	get_object_by_tag(tag)

	

	get_objects_by_tag_pfx(tagpfx)

	

	get_tags()

	

	get_tags_by_tag_pfx(tagpfx)

	

	has_tag(tag)

	

	lookup_object_tag(obj)

	

	lowerObjectByTag(tag[, belowThis, redraw])

	

	lower_object_by_tag(tag[, belowThis, redraw])

	

	raiseObjectByTag(tag[, aboveThis, redraw])

	

	raise_object_by_tag(tag[, aboveThis, redraw])

	

	redraw([whence])

	

	subcanvas_updated_cb(canvas, whence)

	This is a notification that a subcanvas (a canvas contained in our canvas) has been modified.

	update_canvas([whence])

	

Methods Documentation

	
add(obj, tag=None, tagpfx=None, belowThis=None, redraw=True)

	

	
deleteAllObjects(redraw=True)

	

	
deleteObject(obj, redraw=True)

	

	
deleteObjectByTag(tag, redraw=True)

	

	
deleteObjects(objects, redraw=True)

	

	
deleteObjectsByTag(tags, redraw=True)

	

	
delete_all_objects(redraw=True)

	

	
delete_object(obj, redraw=True)

	

	
delete_object_by_tag(tag, redraw=True)

	

	
delete_objects(objects, redraw=True)

	

	
delete_objects_by_tag(tags, redraw=True)

	

	
getObjectByTag(tag)

	

	
getObjectsByTagpfx(tagpfx)

	

	
getTagsByTagpfx(tagpfx)

	

	
get_object_by_tag(tag)

	

	
get_objects_by_tag_pfx(tagpfx)

	

	
get_tags()

	

	
get_tags_by_tag_pfx(tagpfx)

	

	
has_tag(tag)

	

	
lookup_object_tag(obj)

	

	
lowerObjectByTag(tag, belowThis=None, redraw=True)

	

	
lower_object_by_tag(tag, belowThis=None, redraw=True)

	

	
raiseObjectByTag(tag, aboveThis=None, redraw=True)

	

	
raise_object_by_tag(tag, aboveThis=None, redraw=True)

	

	
redraw(whence=3)

	

	
subcanvas_updated_cb(canvas, whence)

	This is a notification that a subcanvas (a canvas contained in
our canvas) has been modified. We in turn signal that our canvas
has been modified.

	
update_canvas(whence=3)

	

get_canvas_type

	
ginga.canvas.CanvasObject.get_canvas_type(name)

	

get_canvas_types

	
ginga.canvas.CanvasObject.get_canvas_types()

	

register_canvas_type

	
ginga.canvas.CanvasObject.register_canvas_type(name, klass)

	

register_canvas_types

	
ginga.canvas.CanvasObject.register_canvas_types(klass_dict)

	

CanvasObjectBase

	
class ginga.canvas.CanvasObject.CanvasObjectBase(**kwdargs)

	Bases: ginga.misc.Callback.Callbacks

This is the abstract base class for a CanvasObject. A CanvasObject
is an item that can be placed on a ImageViewCanvas.

This class defines common methods used by all such objects.

Methods Summary

	calc_dual_scale_from_pt(pt, detail)

	

	calc_radius(viewer, p1, p2)

	

	calc_rotation_from_pt(pt, detail)

	

	calc_scale_from_pt(pt, detail)

	

	calc_vertexes(start_cx, start_cy, end_cx, end_cy)

	

	canvascoords(viewer, data_x, data_y[, center])

	

	contains(x, y)

	For backward compatibility.

	contains_arr(x_arr, y_arr)

	For backward compatibility.

	contains_pt(pt)

	

	contains_pts(points)

	

	convert_mapper(tomap)

	Converts our object from using one coordinate map to another.

	draw_arrowhead(cr, x1, y1, x2, y2)

	

	draw_caps(cr, cap, points[, radius])

	

	draw_edit(cr, viewer)

	

	get_bbox([points])

	Get bounding box of this object.

	get_center_pt()

	Return the geometric average of points as data_points.

	get_cpoints(viewer[, points, no_rotate])

	

	get_data(*args)

	

	get_data_points([points])

	Points returned are in data coordinates.

	get_move_scale_rotate_pts(viewer)

	Returns 3 edit control points for editing this object: a move point, a scale point and a rotate point.

	get_num_points()

	

	get_point_by_index(i)

	

	get_points()

	Get the set of points that is used to draw the object.

	get_pt(viewer, points, pt[, canvas_radius])

	Takes an array of points points and a target point pt.

	get_reference_pt()

	

	initialize(canvas, viewer, logger)

	

	is_compound()

	

	move_delta(xoff, yoff)

	For backward compatibility.

	move_delta_pt(off_pt)

	

	move_to(xdst, ydst)

	For backward compatibility.

	move_to_pt(dst_pt)

	

	point_within_line(points, p_start, p_stop, …)

	

	point_within_radius(points, pt, canvas_radius)

	Points points and point pt are in data coordinates.

	rerotate_by_deg(thetas, detail)

	

	rescale_by(scale_x, scale_y, detail)

	For backward compatibility.

	rescale_by_factors(factors, detail)

	

	rotate(theta_deg[, xoff, yoff])

	For backward compatibility.

	rotate_by(theta_deg)

	For backward compatibility.

	rotate_by_deg(thetas)

	

	rotate_deg(thetas, offset)

	

	scale_by(scale_x, scale_y)

	For backward compatibility.

	scale_by_factors(factors)

	

	scale_font(viewer)

	

	select_contains(viewer, x, y)

	For backward compatibility.

	select_contains_pt(viewer, pt)

	

	set_data(**kwdargs)

	

	set_data_points(points)

	Input points must be in data coordinates, will be converted to the coordinate space of the object and stored.

	set_point_by_index(i, pt)

	

	setup_edit(detail)

	subclass should override as necessary.

	swapxy(x1, y1, x2, y2)

	

	sync_state()

	This method called when changes are made to the parameters.

	use_coordmap(mapobj)

	

	within_line(viewer, points, p_start, p_stop, …)

	Points points and line endpoints p_start, p_stop are in data coordinates.

	within_radius(viewer, points, pt, canvas_radius)

	Points points and point pt are in data coordinates.

Methods Documentation

	
calc_dual_scale_from_pt(pt, detail)

	

	
calc_radius(viewer, p1, p2)

	

	
calc_rotation_from_pt(pt, detail)

	

	
calc_scale_from_pt(pt, detail)

	

	
calc_vertexes(start_cx, start_cy, end_cx, end_cy, arrow_length=10, arrow_degrees=0.35)

	

	
canvascoords(viewer, data_x, data_y, center=None)

	

	
contains(x, y)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use contains_pt() instead.

	
contains_arr(x_arr, y_arr)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use contains_pts() instead.

	
contains_pt(pt)

	

	
contains_pts(points)

	

	
convert_mapper(tomap)

	Converts our object from using one coordinate map to another.

NOTE: In some cases this only approximately preserves the
equivalent point values when transforming between coordinate
spaces.

	
draw_arrowhead(cr, x1, y1, x2, y2)

	

	
draw_caps(cr, cap, points, radius=None)

	

	
draw_edit(cr, viewer)

	

	
get_bbox(points=None)

	Get bounding box of this object.

	Returns

	(p1, p2, p3, p4): a 4-tuple of the points in data coordinates,

beginning with the lower-left and proceeding counter-clockwise.

	
get_center_pt()

	Return the geometric average of points as data_points.

	
get_cpoints(viewer, points=None, no_rotate=False)

	

	
get_data(*args)

	

	
get_data_points(points=None)

	Points returned are in data coordinates.

	
get_move_scale_rotate_pts(viewer)

	Returns 3 edit control points for editing this object: a move
point, a scale point and a rotate point. These points are all in
data coordinates.

	
get_num_points()

	

	
get_point_by_index(i)

	

	
get_points()

	Get the set of points that is used to draw the object.

Points are returned in data coordinates.

	
get_pt(viewer, points, pt, canvas_radius=None)

	Takes an array of points points and a target point pt.
Returns the first index of the point that is within the
radius of the target point. If none of the points are within
the radius, returns None.

	
get_reference_pt()

	

	
initialize(canvas, viewer, logger)

	

	
is_compound()

	

	
move_delta(xoff, yoff)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use move_delta_pt instead.

	
move_delta_pt(off_pt)

	

	
move_to(xdst, ydst)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use move_to_pt() instead.

	
move_to_pt(dst_pt)

	

	
point_within_line(points, p_start, p_stop, canvas_radius)

	

	
point_within_radius(points, pt, canvas_radius, scales=(1.0, 1.0))

	Points points and point pt are in data coordinates.
Return True for points within the circle defined by
a center at point pt and within canvas_radius.

	
rerotate_by_deg(thetas, detail)

	

	
rescale_by(scale_x, scale_y, detail)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use rescale_by_factors() instead.

	
rescale_by_factors(factors, detail)

	

	
rotate(theta_deg, xoff=0, yoff=0)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use rotate_deg() instead.

	
rotate_by(theta_deg)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use rotate_by_deg() instead.

	
rotate_by_deg(thetas)

	

	
rotate_deg(thetas, offset)

	

	
scale_by(scale_x, scale_y)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use scale_by_factors() instead.

	
scale_by_factors(factors)

	

	
scale_font(viewer)

	

	
select_contains(viewer, x, y)

	For backward compatibility. TO BE DEPRECATED–DO NOT USE.
Use select_contains_pt() instead.

	
select_contains_pt(viewer, pt)

	

	
set_data(**kwdargs)

	

	
set_data_points(points)

	Input points must be in data coordinates, will be converted
to the coordinate space of the object and stored.

	
set_point_by_index(i, pt)

	

	
setup_edit(detail)

	subclass should override as necessary.

	
swapxy(x1, y1, x2, y2)

	

	
sync_state()

	This method called when changes are made to the parameters.
subclasses should override if they need any special state handling.

	
use_coordmap(mapobj)

	

	
within_line(viewer, points, p_start, p_stop, canvas_radius)

	Points points and line endpoints p_start, p_stop are in
data coordinates.
Return True for points within the line defined by a line from
p_start to p_end and within canvas_radius.
The distance between points is scaled by the viewer’s canvas scale.

	
within_radius(viewer, points, pt, canvas_radius)

	Points points and point pt are in data coordinates.
Return True for points within the circle defined by
a center at point pt and within canvas_radius.
The distance between points is scaled by the canvas scale.

CompoundMixin

	
class ginga.canvas.CompoundMixin.CompoundMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A CompoundMixin is a mixin class that makes an object that is an
aggregation of other objects.

It is used to make generic compound drawing types as well as (for example)
layers of canvases on top of an image.

Methods Summary

	addObject(obj[, belowThis])

	

	add_object(obj[, belowThis])

	

	contains_pts(pts)

	

	deleteAllObjects()

	

	deleteObject(obj)

	

	deleteObjects(objects)

	

	delete_all_objects()

	

	delete_object(obj)

	

	delete_objects(objects)

	

	draw(viewer)

	

	getItemsAt(pt)

	

	getObjects()

	

	get_center_pt()

	

	get_edit_points(viewer)

	

	get_items_at(pt)

	

	get_llur()

	Get lower-left and upper-right coordinates of the bounding box of this compound object.

	get_objects()

	

	get_objects_by_kind(kind)

	

	get_objects_by_kinds(kinds)

	

	get_points()

	

	get_reference_pt()

	

	has_object(obj)

	

	inherit_from(obj)

	

	initialize(canvas, viewer, logger)

	

	is_compound()

	

	lowerObject(obj[, belowThis])

	

	lower_object(obj[, belowThis])

	

	move_delta_pt(off_pt)

	

	raiseObject(obj[, aboveThis])

	

	raise_object(obj[, aboveThis])

	

	reorder_layers()

	

	roll_objects(n)

	

	rotate(theta[, xoff, yoff])

	

	scale_by_factors(factors)

	

	select_contains_pt(viewer, pt)

	

	select_items_at(viewer, pt[, test])

	

	setAttrAll(**kwdargs)

	

	set_attr_all(**kwdargs)

	

	swap_objects()

	

	use_coordmap(mapobj)

	

Methods Documentation

	
addObject(obj, belowThis=None)

	

	
add_object(obj, belowThis=None)

	

	
contains_pts(pts)

	

	
deleteAllObjects()

	

	
deleteObject(obj)

	

	
deleteObjects(objects)

	

	
delete_all_objects()

	

	
delete_object(obj)

	

	
delete_objects(objects)

	

	
draw(viewer)

	

	
getItemsAt(pt)

	

	
getObjects()

	

	
get_center_pt()

	

	
get_edit_points(viewer)

	

	
get_items_at(pt)

	

	
get_llur()

	Get lower-left and upper-right coordinates of the bounding box
of this compound object.

	Returns

	x1, y1, x2, y2: a 4-tuple of the lower-left and upper-right coords

	
get_objects()

	

	
get_objects_by_kind(kind)

	

	
get_objects_by_kinds(kinds)

	

	
get_points()

	

	
get_reference_pt()

	

	
has_object(obj)

	

	
inherit_from(obj)

	

	
initialize(canvas, viewer, logger)

	

	
is_compound()

	

	
lowerObject(obj, belowThis=None)

	

	
lower_object(obj, belowThis=None)

	

	
move_delta_pt(off_pt)

	

	
raiseObject(obj, aboveThis=None)

	

	
raise_object(obj, aboveThis=None)

	

	
reorder_layers()

	

	
roll_objects(n)

	

	
rotate(theta, xoff=0, yoff=0)

	

	
scale_by_factors(factors)

	

	
select_contains_pt(viewer, pt)

	

	
select_items_at(viewer, pt, test=None)

	

	
setAttrAll(**kwdargs)

	

	
set_attr_all(**kwdargs)

	

	
swap_objects()

	

	
use_coordmap(mapobj)

	

NativeMapper

	
class ginga.canvas.coordmap.NativeMapper(viewer)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer’s canvas in
the viewer’s canvas coordinates.

Methods Summary

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(cvs_pts[, viewer])

	

Methods Documentation

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(cvs_pts, viewer=None)

	

WindowMapper

	
class ginga.canvas.coordmap.WindowMapper(viewer)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in ‘window’ coordinates.

Methods Summary

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(cvs_pts[, viewer])

	

Methods Documentation

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(cvs_pts, viewer=None)

	

CartesianMapper

	
class ginga.canvas.coordmap.CartesianMapper(viewer)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in Cartesian
coordinates that do not scale (unlike DataMapper).

Methods Summary

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(crt_pts[, viewer])

	

Methods Documentation

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(crt_pts, viewer=None)

	

DataMapper

	
class ginga.canvas.coordmap.DataMapper(viewer)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in data coordinates.

Methods Summary

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(data_pts[, viewer])

	

Methods Documentation

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(data_pts, viewer=None)

	

OffsetMapper

	
class ginga.canvas.coordmap.OffsetMapper(viewer, refobj)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in data coordinates
that are offsets relative to some other reference object.

Methods Summary

	calc_offsets(pts)

	

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(delta_pt[, viewer])

	

Methods Documentation

	
calc_offsets(pts)

	

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(delta_pt, viewer=None)

	

WCSMapper

	
class ginga.canvas.coordmap.WCSMapper(viewer)

	Bases: ginga.canvas.coordmap.BaseMapper

A coordinate mapper that maps to the viewer in WCS coordinates.

Methods Summary

	data_to(data_pts[, viewer])

	

	offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.

	rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees) around the point indicated by offset.

	to_data(wcs_pts[, viewer])

	

Methods Documentation

	
data_to(data_pts, viewer=None)

	

	
offset_pt(pts, offset)

	Offset a point specified by pt, by the offsets offset.
Coordinates are assumed to be in the space defined by this mapper.

	
rotate_pt(pts, theta, offset)

	Rotate a point specified by pt by the angle theta (in degrees)
around the point indicated by offset.
Coordinates are assumed to be in the space defined by this mapper.

	
to_data(wcs_pts, viewer=None)

	

DrawingMixin

	
class ginga.canvas.DrawingMixin.DrawingMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The DrawingMixin is a mixin class that adds drawing capability for
some of the basic CanvasObject-derived types. The set_surface method is
used to associate a ImageViewCanvas object for layering on.

Methods Summary

	add_draw_mode(name, **kwargs)

	

	clear_selected()

	

	draw(viewer)

	

	draw_motion(canvas, event, data_x, data_y, …)

	

	draw_poly_add(canvas, event, data_x, data_y, …)

	

	draw_poly_delete(canvas, event, data_x, …)

	

	draw_start(canvas, event, data_x, data_y, viewer)

	

	draw_stop(canvas, event, data_x, data_y, viewer)

	

	edit_delete()

	

	edit_delete_cb(canvas, event, data_x, …)

	

	edit_motion(canvas, event, data_x, data_y, …)

	

	edit_poly_add(canvas, event, data_x, data_y, …)

	

	edit_poly_delete(canvas, event, data_x, …)

	

	edit_rotate(delta_deg, viewer)

	

	edit_scale(delta_x, delta_y, viewer)

	

	edit_select(newobj)

	

	edit_start(canvas, event, data_x, data_y, viewer)

	

	edit_stop(canvas, event, data_x, data_y, viewer)

	

	enable_draw(tf)

	

	enable_edit(tf)

	

	getDrawClass(drawtype)

	

	get_draw_class(drawtype)

	

	get_draw_classes()

	

	get_draw_mode()

	

	get_drawparams()

	

	get_drawtype()

	

	get_drawtypes()

	

	get_edit_object()

	

	get_selected()

	

	is_drawing()

	

	is_editing()

	

	is_selected(obj)

	

	num_selected()

	

	pick_hover(canvas, event, data_x, data_y, viewer)

	

	pick_key(canvas, event, data_x, data_y, viewer)

	

	pick_motion(canvas, event, data_x, data_y, …)

	

	pick_start(canvas, event, data_x, data_y, viewer)

	

	pick_stop(canvas, event, data_x, data_y, viewer)

	

	process_drawing()

	

	register_canvas_type(name, klass)

	

	register_for_cursor_drawing(viewer)

	

	select_add(obj)

	

	select_remove(obj)

	

	setSurface(viewer)

	

	set_draw_mode(mode)

	

	set_drawcolor(colorname)

	

	set_drawtype(drawtype, **drawparams)

	

	set_surface(viewer)

	

Methods Documentation

	
add_draw_mode(name, **kwargs)

	

	
clear_selected()

	

	
draw(viewer)

	

	
draw_motion(canvas, event, data_x, data_y, viewer)

	

	
draw_poly_add(canvas, event, data_x, data_y, viewer)

	

	
draw_poly_delete(canvas, event, data_x, data_y, viewer)

	

	
draw_start(canvas, event, data_x, data_y, viewer)

	

	
draw_stop(canvas, event, data_x, data_y, viewer)

	

	
edit_delete()

	

	
edit_delete_cb(canvas, event, data_x, data_y, viewer)

	

	
edit_motion(canvas, event, data_x, data_y, viewer)

	

	
edit_poly_add(canvas, event, data_x, data_y, viewer)

	

	
edit_poly_delete(canvas, event, data_x, data_y, viewer)

	

	
edit_rotate(delta_deg, viewer)

	

	
edit_scale(delta_x, delta_y, viewer)

	

	
edit_select(newobj)

	

	
edit_start(canvas, event, data_x, data_y, viewer)

	

	
edit_stop(canvas, event, data_x, data_y, viewer)

	

	
enable_draw(tf)

	

	
enable_edit(tf)

	

	
getDrawClass(drawtype)

	

	
get_draw_class(drawtype)

	

	
get_draw_classes()

	

	
get_draw_mode()

	

	
get_drawparams()

	

	
get_drawtype()

	

	
get_drawtypes()

	

	
get_edit_object()

	

	
get_selected()

	

	
is_drawing()

	

	
is_editing()

	

	
is_selected(obj)

	

	
num_selected()

	

	
pick_hover(canvas, event, data_x, data_y, viewer)

	

	
pick_key(canvas, event, data_x, data_y, viewer)

	

	
pick_motion(canvas, event, data_x, data_y, viewer)

	

	
pick_start(canvas, event, data_x, data_y, viewer)

	

	
pick_stop(canvas, event, data_x, data_y, viewer)

	

	
process_drawing()

	

	
register_canvas_type(name, klass)

	

	
register_for_cursor_drawing(viewer)

	

	
select_add(obj)

	

	
select_remove(obj)

	

	
setSurface(viewer)

	

	
set_draw_mode(mode)

	

	
set_drawcolor(colorname)

	

	
set_drawtype(drawtype, **drawparams)

	

	
set_surface(viewer)

	

CompoundObject

	
class ginga.canvas.types.layer.CompoundObject(*objects, **kwdargs)

	Bases: ginga.canvas.CompoundMixin.CompoundMixin, ginga.canvas.CanvasObject.CanvasObjectBase

Compound object on a ImageViewCanvas.
Parameters are the child objects making up the compound object.
Objects are drawn in the order listed. Example:

This makes a point inside a circle.

Methods Summary

	get_params_metadata()

	

Methods Documentation

	
classmethod get_params_metadata()

	

Canvas

	
class ginga.canvas.types.layer.Canvas(*objects, **kwdargs)

	Bases: ginga.canvas.CanvasMixin.CanvasMixin, ginga.canvas.types.layer.CompoundObject

Class to handle canvas in Ginga.

Methods Summary

	get_params_metadata()

	

Methods Documentation

	
classmethod get_params_metadata()

	

DrawingCanvas

	
class ginga.canvas.types.layer.DrawingCanvas(**kwdargs)

	Bases: ginga.Mixins.UIMixin, ginga.canvas.DrawingMixin.DrawingMixin, ginga.canvas.types.layer.Canvas

Drawing canvas.

ImageViewBase

	
class ginga.ImageView.ImageViewBase(logger=None, rgbmap=None, settings=None)

	Bases: ginga.misc.Callback.Callbacks

An abstract base class for displaying images represented by
Numpy data arrays.

This class attempts to do as much of the image handling as possible
using Numpy array manipulations (even color and intensity mapping)
so that only a minimal mapping to a pixel buffer is necessary in
concrete subclasses that connect to an actual rendering surface
(e.g., Qt or GTK).

	Parameters

	logger : Logger [https://docs.python.org/3/library/logging.html#logging.Logger] or None [https://docs.python.org/3/library/constants.html#None]

Logger for tracing and debugging. If not given, one will be created.

rgbmap : RGBMapper or None [https://docs.python.org/3/library/constants.html#None]

RGB mapper object. If not given, one will be created.

settings : SettingGroup or None [https://docs.python.org/3/library/constants.html#None]

Viewer preferences. If not given, one will be created.

Attributes Summary

	vname

	

	vtypes

	

Methods Summary

	apply_profile_or_settings(image)

	Apply an embedded profile in an image to the viewer.

	apply_transforms(data, rot_deg)

	Apply transformations to the given data.

	auto_levels([autocuts])

	Apply auto-cut levels on the image view.

	auto_levels_cb(setting, value)

	Handle callback related to changes in auto-cut levels.

	auto_orient()

	Set the orientation for the image to a reasonable default.

	canvas_changed_cb(canvas, whence)

	Handle callback for when canvas has changed.

	canvascoords(data_x, data_y[, center])

	Same as get_canvas_xy().

	center_cursor()

	Center the cursor in the viewer’s widget, in both X and Y.

	center_image([no_reset])

	Pan to the center of the image.

	check_cursor_location()

	Check whether the data location of the last known position of the cursor has changed.

	clear()

	Clear the displayed image.

	cmap_changed_cb(setting, value)

	Handle callback that is invoked when the color settings have changed in some way.

	configure(width, height)

	See set_window_size().

	convert_via_profile(data_np, order, …)

	Convert the given RGB data from the working ICC profile to the output profile in-place.

	copy_attributes(dst_fi, attrlist)

	Copy interesting attributes of our configuration to another image view.

	copy_to_dst(target)

	Extract our image and call set_image() on the target with it.

	cut_levels(loval, hival[, no_reset])

	Apply cut levels on the image view.

	cut_levels_cb(setting, value)

	Handle callback related to changes in cut levels.

	data_to_offset(data_x, data_y[, center])

	Reverse of offset_to_data().

	define_cursor(cname, cursor)

	Define a viewer cursor under a name.

	delayed_redraw()

	Handle delayed redrawing of the canvas.

	enable_auto_orient(tf)

	Set auto_orient behavior.

	enable_autocenter(option)

	Set autocenter behavior.

	enable_autocuts(option)

	Set autocuts behavior.

	enable_autozoom(option)

	Set autozoom behavior.

	get_autocenter_options()

	Get all valid autocenter options.

	get_autocut_methods()

	Same as ginga.AutoCuts.AutoCutsBase.get_algorithms().

	get_autocuts_options()

	Get all valid autocuts options.

	get_autozoom_options()

	Get all valid autozoom options.

	get_bg()

	Get the background color.

	get_canvas()

	Get the canvas object used by this instance.

	get_canvas_image()

	Get canvas image object.

	get_canvas_pt(data_pt)

	Similar to get_canvas_xy(), except that it takes a single array of points.

	get_canvas_xy(data_x, data_y[, center])

	Reverse of get_data_xy().

	get_center()

	Get image center.

	get_color_algorithms()

	Get available color distribution algorithm names.

	get_coordmap(key)

	Get coordinate mapper.

	get_cursor(cname)

	Get the cursor stored under the name.

	get_cut_levels()

	Get cut levels.

	get_data(data_x, data_y)

	Get the data value at the given position.

	get_data_pct(xpct, ypct)

	Calculate new data size for the given axis ratios.

	get_data_pt(win_pt)

	Similar to get_data_xy(), except that it takes a single array of points.

	get_data_size()

	Get the dimensions of the image currently being displayed.

	get_data_xy(win_x, win_y[, center])

	Get the closest coordinates in the data array to those reported on the window.

	get_datarect()

	Get the approximate bounding box of the displayed image.

	get_desired_size()

	Get desired size.

	get_dims(data)

	Get the first two dimensions of Numpy array data.

	get_fg()

	Get the foreground color.

	get_image()

	Get the image currently being displayed.

	get_image_as_array()

	Get the current image shown in the viewer, with any overlaid graphics, in a numpy array with channels as needed and ordered by the back end widget.

	get_image_as_buffer([output])

	Get the current image shown in the viewer, with any overlaid graphics, in a IO buffer with channels as needed and ordered by the back end widget.

	get_last_data_xy()

	Get the last position of the cursor in data coordinates.

	get_last_win_xy()

	Get the last position of the cursor in window coordinates.

	get_limits([coord])

	Get the bounding box of the viewer extents.

	get_logger()

	Get the logger used by this instance.

	get_pan([coord])

	Get pan positions.

	get_pan_rect()

	Get the coordinates in the actual data corresponding to the area shown in the display for the current zoom level and pan.

	get_pixel_distance(x1, y1, x2, y2)

	Calculate distance between the given pixel positions.

	get_plain_image_as_widget()

	Get the current image shown in the viewer, without any overlaid graphics, in the format of an image widget in the back end toolkit.

	get_private_canvas()

	Get the private canvas object used by this instance.

	get_refresh_stats()

	Return the measured statistics for timed refresh intervals.

	get_rgb_image_as_buffer([output, format, …])

	Get the current image shown in the viewer, with any overlaid graphics, in a file IO-like object encoded as a bitmap graphics file.

	get_rgb_image_as_bytes([format, quality])

	Get the current image shown in the viewer, with any overlaid graphics, in the form of a buffer in the form of bytes.

	get_rgb_image_as_widget([output, format, …])

	Get the current image shown in the viewer, with any overlaid graphics, in the form of a image widget in the toolkit of the back end.

	get_rgb_object([whence])

	Create and return RGB slices representing the data that should be rendered at the current zoom level and pan settings.

	get_rgb_order()

	Get RGB order.

	get_rgbmap()

	Get the RGB map object used by this instance.

	get_rotation()

	Get image rotation angle.

	get_rotation_info()

	Get rotation information.

	get_scale()

	Same as get_scale_max().

	get_scale_base_xy()

	Get stretch factors.

	get_scale_limits()

	Get scale limits.

	get_scale_max()

	Get maximum scale factor.

	get_scale_min()

	Get minimum scale factor.

	get_scale_text()

	Report current scaling in human-readable format.

	get_scale_xy()

	Get scale factors.

	get_settings()

	Get the settings used by this instance.

	get_transforms()

	Get transformations behavior.

	get_window_size()

	Get the window size in the underlying implementation.

	get_zoom()

	Get zoom level.

	get_zoom_algorithm()

	Get zoom algorithm.

	get_zoomrate()

	Get zoom rate.

	getwin_array([order, alpha, dtype])

	Get Numpy data array for display window.

	getwin_buffer([order, alpha, dtype])

	Same as getwin_array(), but with the output array converted to C-order Python bytes.

	initialize_private_canvas(private_canvas)

	Initialize the private canvas used by this instance.

	interpolation_change_cb(setting, value)

	Handle callback related to changes in interpolation.

	invert_cmap()

	Invert the color map.

	is_compound()

	Indicate if canvas object is a compound object.

	is_redraw_pending()

	Indicates whether a deferred redraw has been scheduled.

	make_cursor(iconpath, x, y)

	Make a cursor in the viewer’s native widget toolkit.

	make_timer()

	Return a timer object implemented using the back end.

	offset_to_data(off_x, off_y[, center])

	Get the closest coordinates in the data array to those in cartesian fixed (non-scaled) canvas coordinates.

	offset_to_window(off_x, off_y)

	Convert data offset to window coordinates.

	onscreen_message(text[, delay, redraw])

	Place a message onscreen in the viewer window.

	onscreen_message_off()

	Erase any message onscreen in the viewer window.

	overlay_images(canvas, data[, whence])

	Overlay data from any canvas image objects.

	pan_cb(setting, value)

	Handle callback related to changes in pan.

	panset_pct(pct_x, pct_y)

	Similar to set_pan(), except that pan positions are determined by multiplying data dimensions with the given scale factors, where 1 is 100%.

	panset_xy(data_x, data_y[, no_reset])

	Similar to set_pan(), except that input pan positions are always in data space.

	position_cursor(data_x, data_y)

	Position the current cursor to a location defined it data coords.

	recalc_transforms([trcat])

	Takes a catalog of transforms (trcat) and builds the chain of default transforms necessary to do rendering with most backends.

	redraw([whence])

	Redraw the canvas.

	redraw_data([whence])

	Render image from RGB map and redraw private canvas.

	redraw_now([whence])

	Redraw the displayed image.

	refresh_timer_cb(timer, flags)

	Refresh timer callback.

	render_image(rgbobj, dst_x, dst_y)

	Render image.

	reschedule_redraw(time_sec)

	Reschedule redraw event.

	restore_cmap()

	Restores the color map from any rotation, stretch and/or shrinkage.

	restore_contrast()

	Restores the color map from any stretch and/or shrinkage.

	rgbmap_cb(rgbmap)

	Handle callback for when RGB map has changed.

	rotate(deg)

	Rotate the view of an image in a channel.

	rotation_change_cb(setting, value)

	Handle callback related to changes in rotation angle.

	save_plain_image_as_file(filepath[, format, …])

	Save the current image shown in the viewer, without any overlaid graphics, in a file with the specified format and quality.

	save_profile(**params)

	Save the given parameters into profile settings.

	save_rgb_image_as_file(filepath[, format, …])

	Save the current image shown in the viewer, with any overlaid graphics, in a file with the specified format and quality.

	scale_and_shift_cmap(scale_pct, shift_pct)

	Stretch and/or shrink the color map.

	scale_cb(setting, value)

	Handle callback related to image scaling.

	scale_to(scale_x, scale_y[, no_reset])

	Scale the image in a channel.

	set_autocenter(option)

	Set autocenter behavior.

	set_autocut_params(method, **params)

	Set auto-cut parameters.

	set_autocuts(autocuts)

	Set the auto-cut algorithm.

	set_bg(r, g, b)

	Set the background color.

	set_calg(dist)

	Set color distribution algorithm.

	set_canvas(canvas[, private_canvas])

	Set the canvas object.

	set_cmap(cm)

	Set color map.

	set_color_algorithm(calg_name, **kwdargs)

	Set the color distribution algorithm.

	set_color_map(cmap_name)

	Set the color map.

	set_coordmap(key, mapper)

	Set coordinate mapper.

	set_cursor(cursor)

	Set the cursor in the viewer widget.

	set_data(data[, metadata])

	Set an image to be displayed by providing raw data.

	set_desired_size(width, height)

	See set_window_size().

	set_enter_focus(tf)

	Determine whether the viewer widget should take focus the cursor enters the window.

	set_fg(r, g, b)

	Set the foreground color.

	set_image(image[, add_to_canvas])

	Set an image to be displayed.

	set_imap(im)

	Set intensity map.

	set_intensity_map(imap_name)

	Set the intensity map.

	set_limits(limits[, coord])

	Set the bounding box of the viewer extents.

	set_name(name)

	Set viewer name.

	set_onscreen_message(text[, redraw])

	Called by a subclass to update the onscreen message.

	set_pan(pan_x, pan_y[, coord, no_reset])

	Set pan behavior.

	set_redraw_lag(lag_sec)

	Set lag time for redrawing the canvas.

	set_refresh_rate(fps)

	Set the refresh rate for redrawing the canvas at a timed interval.

	set_rgbmap(rgbmap)

	Set RGB map object used by this instance.

	set_scale_base_xy(scale_x_base, scale_y_base)

	Set stretch factors.

	set_scale_limits(scale_min, scale_max)

	Set scale limits.

	set_window_size(width, height)

	Report the size of the window to display the image.

	set_zoom_algorithm(name)

	Set zoom algorithm.

	set_zoomrate(zoomrate)

	Set zoom rate.

	shift_cmap(pct)

	Shift color map.

	show_color_bar(tf[, side])

	

	show_focus_indicator(tf[, color])

	

	show_mode_indicator(tf[, corner])

	

	show_pan_mark(tf[, color])

	

	start_refresh()

	Start redrawing the canvas at the previously set timed interval.

	stop_refresh()

	Stop redrawing the canvas at the previously set timed interval.

	switch_cursor(cname)

	Switch the viewer’s cursor to the one defined under a name.

	take_focus()

	Have the widget associated with this viewer take the keyboard focus.

	transform(flip_x, flip_y, swap_xy)

	Transform view of the image.

	transform_cb(setting, value)

	Handle callback related to changes in transformations.

	update_image()

	Update image.

	window_has_origin_upper()

	Indicate if window of backend toolkit is implemented with an origin up or down.

	window_to_offset(win_x, win_y)

	Reverse of offset_to_window().

	zoom_fit([no_reset])

	Zoom to fit display window.

	zoom_in()

	Zoom in a level.

	zoom_out()

	Zoom out a level.

	zoom_to(zoomlevel[, no_reset])

	Set zoom level in a channel.

	zoomalg_change_cb(setting, value)

	Handle callback related to changes in zoom.

Attributes Documentation

	
vname = 'Ginga Image'

	

	
vtypes = [<class 'ginga.BaseImage.BaseImage'>]

	

Methods Documentation

	
apply_profile_or_settings(image)

	Apply an embedded profile in an image to the viewer.

	Parameters

	image : AstroImage or RGBImage

Image object.

This function is used to initialize the viewer when a new image

is loaded. Either the profile settings embedded in the image or

the default settings are applied as specified in the preferences.

	
apply_transforms(data, rot_deg)

	Apply transformations to the given data.
These include flip/swap X/Y, invert Y, and rotation.

	Parameters

	data : ndarray

Data to be transformed.

rot_deg : float

Rotate the data by the given degrees.

	Returns

	data : ndarray

Transformed data.

	
auto_levels(autocuts=None)

	Apply auto-cut levels on the image view.

	Parameters

	autocuts : subclass of AutoCutsBase or None [https://docs.python.org/3/library/constants.html#None]

An object that implements the desired auto-cut algorithm.
If not given, use algorithm from preferences.

	
auto_levels_cb(setting, value)

	Handle callback related to changes in auto-cut levels.

	
auto_orient()

	Set the orientation for the image to a reasonable default.

	
canvas_changed_cb(canvas, whence)

	Handle callback for when canvas has changed.

	
canvascoords(data_x, data_y, center=None)

	Same as get_canvas_xy().

	
center_cursor()

	Center the cursor in the viewer’s widget, in both X and Y.

This should be implemented by subclasses.

	
center_image(no_reset=True)

	Pan to the center of the image.

	Parameters

	no_reset : bool

See set_pan().

	
check_cursor_location()

	Check whether the data location of the last known position
of the cursor has changed. If so, issue a callback.

	
clear()

	Clear the displayed image.

	
cmap_changed_cb(setting, value)

	Handle callback that is invoked when the color settings
have changed in some way.

	
configure(width, height)

	See set_window_size().

	
convert_via_profile(data_np, order, inprof_name, outprof_name)

	Convert the given RGB data from the working ICC profile
to the output profile in-place.

	Parameters

	data_np : ndarray

RGB image data to be displayed.

order : str

Order of channels in the data (e.g. “BGRA”).

inprof_name, outprof_name : str

ICC profile names (see ginga.util.rgb_cms.get_profiles()).

	
copy_attributes(dst_fi, attrlist)

	Copy interesting attributes of our configuration to another
image view.

	Parameters

	dst_fi : subclass of ImageViewBase

Another instance of image view.

attrlist : list

A list of attribute names to copy. They can be 'transforms',
'rotation', 'cutlevels', 'rgbmap', 'zoom',
'pan', 'autocuts'.

	
copy_to_dst(target)

	Extract our image and call set_image() on the target with it.

	Parameters

	target

Subclass of ImageViewBase.

	
cut_levels(loval, hival, no_reset=False)

	Apply cut levels on the image view.

	Parameters

	loval, hival : float

Low and high values of the cut levels, respectively.

no_reset : bool

Do not reset autocuts setting.

	
cut_levels_cb(setting, value)

	Handle callback related to changes in cut levels.

	
data_to_offset(data_x, data_y, center=None)

	Reverse of offset_to_data().

	
define_cursor(cname, cursor)

	Define a viewer cursor under a name. Does not change the
current cursor.

	Parameters

	cname : str

name of the cursor to define.

cursor : object

a cursor object in the back end’s toolkit

`cursor` is usually constructed from `make_cursor`.

	
delayed_redraw()

	Handle delayed redrawing of the canvas.

	
enable_auto_orient(tf)

	Set auto_orient behavior.

	Parameters

	tf : bool

Turns automatic image orientation on or off.

	
enable_autocenter(option)

	Set autocenter behavior.

	Parameters

	option : {‘on’, ‘override’, ‘once’, ‘off’}

Option for auto-center behavior. A list of acceptable options can
also be obtained by get_autocenter_options().

	Raises

	ginga.ImageView.ImageViewError

Invalid option.

	
enable_autocuts(option)

	Set autocuts behavior.

	Parameters

	option : {‘on’, ‘override’, ‘once’, ‘off’}

Option for auto-cut behavior. A list of acceptable options can
also be obtained by get_autocuts_options().

	Raises

	ginga.ImageView.ImageViewError

Invalid option.

	
enable_autozoom(option)

	Set autozoom behavior.

	Parameters

	option : {‘on’, ‘override’, ‘once’, ‘off’}

Option for zoom behavior. A list of acceptable options can
also be obtained by get_autozoom_options().

	Raises

	ginga.ImageView.ImageViewError

Invalid option.

	
get_autocenter_options()

	Get all valid autocenter options.

	Returns

	autocenter_options : tuple

A list of valid options.

	
get_autocut_methods()

	Same as ginga.AutoCuts.AutoCutsBase.get_algorithms().

	
get_autocuts_options()

	Get all valid autocuts options.

	Returns

	autocuts_options : tuple

A list of valid options.

	
get_autozoom_options()

	Get all valid autozoom options.

	Returns

	autozoom_options : tuple

A list of valid options.

	
get_bg()

	Get the background color.

	Returns

	img_bg : tuple

RGB values.

	
get_canvas()

	Get the canvas object used by this instance.

	Returns

	canvas : DrawingCanvas

Canvas.

	
get_canvas_image()

	Get canvas image object.

	Returns

	imgobj : NormImage

Normalized image sitting on the canvas.

	
get_canvas_pt(data_pt)

	Similar to get_canvas_xy(), except that it takes a single
array of points.

	
get_canvas_xy(data_x, data_y, center=None)

	Reverse of get_data_xy().

	
get_center()

	Get image center.

	Returns

	ctr : tuple

X and Y positions, in that order.

	
get_color_algorithms()

	Get available color distribution algorithm names.
See ginga.ColorDist.get_dist_names().

	
get_coordmap(key)

	Get coordinate mapper.

	Parameters

	key : str

Name of the desired coordinate mapper.

	Returns

	mapper

Coordinate mapper object (see ginga.canvas.coordmap).

	
get_cursor(cname)

	Get the cursor stored under the name.
This can be overridden by subclasses, if necessary.

	Parameters

	cname : str

name of the cursor to return.

	
get_cut_levels()

	Get cut levels.

	Returns

	cuts : tuple

Low and high values, in that order.

	
get_data(data_x, data_y)

	Get the data value at the given position.
Indices are zero-based, as in Numpy.

	Parameters

	data_x, data_y : int

Data indices for X and Y, respectively.

	Returns

	value

Data slice.

	Raises

	ginga.ImageView.ImageViewNoDataError

Image not found.

	
get_data_pct(xpct, ypct)

	Calculate new data size for the given axis ratios.
See get_data_size().

	Parameters

	xpct, ypct : float

Ratio for X and Y, respectively, where 1 is 100%.

	Returns

	x, y : int

Scaled dimensions.

	
get_data_pt(win_pt)

	Similar to get_data_xy(), except that it takes a single
array of points.

	
get_data_size()

	Get the dimensions of the image currently being displayed.

	Returns

	size : tuple

Image dimensions in the form of (width, height).

	
get_data_xy(win_x, win_y, center=None)

	Get the closest coordinates in the data array to those
reported on the window.

	Parameters

	win_x, win_y : float or ndarray

Window coordinates.

center : bool

If True [https://docs.python.org/3/library/constants.html#True], then the coordinates are mapped such that the
pixel is centered on the square when the image is zoomed in past
1X. This is the specification of the FITS image standard,
that the pixel is centered on the integer row/column.

	Returns

	coord : tuple

Data coordinates in the form of (x, y).

	
get_datarect()

	Get the approximate bounding box of the displayed image.

	Returns

	rect : tuple

Bounding box in data coordinates in the form of
(x1, y1, x2, y2).

	
get_desired_size()

	Get desired size.

	Returns

	size : tuple

Desired size in the form of (width, height).

	
get_dims(data)

	Get the first two dimensions of Numpy array data.
Data may have more dimensions, but they are not reported.

	Returns

	dims : tuple

Data dimensions in the form of (width, height).

	
get_fg()

	Get the foreground color.

	Returns

	img_fg : tuple

RGB values.

	
get_image()

	Get the image currently being displayed.

	Returns

	image : AstroImage or RGBImage

Image object.

	
get_image_as_array()

	Get the current image shown in the viewer, with any overlaid
graphics, in a numpy array with channels as needed and ordered
by the back end widget.

This should be implemented by subclasses.

	
get_image_as_buffer(output=None)

	Get the current image shown in the viewer, with any overlaid
graphics, in a IO buffer with channels as needed and ordered
by the back end widget.

This can be overridden by subclasses.

	Parameters

	output : a file IO-like object or None

open python IO descriptor or None to have one created

	Returns

	buffer : file IO-like object

This will be the one passed in, unless output is None
in which case a BytesIO obejct is returned

	
get_last_data_xy()

	Get the last position of the cursor in data coordinates.
This can be overridden by subclasses, if necessary.

	
get_last_win_xy()

	Get the last position of the cursor in window coordinates.
This can be overridden by subclasses, if necessary.

	
get_limits(coord='data')

	Get the bounding box of the viewer extents.

	Returns

	limits : tuple

	Bounding box in coordinates of type coord in the form of

	(ll_pt, ur_pt).

	
get_logger()

	Get the logger used by this instance.

	Returns

	logger : Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

Logger.

	
get_pan(coord='data')

	Get pan positions.

	Parameters

	coord : {‘data’, ‘wcs’}

Indicates whether the pan positions are returned in
data or WCS space.

	Returns

	positions : tuple

X and Y positions, in that order.

	
get_pan_rect()

	Get the coordinates in the actual data corresponding to the
area shown in the display for the current zoom level and pan.

	Returns

	points : list

Coordinates in the form of
[(x0, y0), (x1, y1), (x2, y2), (x3, y3)]
from lower-left to lower-right.

	
get_pixel_distance(x1, y1, x2, y2)

	Calculate distance between the given pixel positions.

	Parameters

	x1, y1, x2, y2 : number

Pixel coordinates.

	Returns

	dist : float

Rounded distance.

	
get_plain_image_as_widget()

	Get the current image shown in the viewer, without any overlaid
graphics, in the format of an image widget in the back end toolkit.
Typically used for generating thumbnails.
This should be implemented by subclasses.

	Returns

	widget : object

An image widget object in the viewer’s back end toolkit

	
get_private_canvas()

	Get the private canvas object used by this instance.

	Returns

	canvas : DrawingCanvas

Canvas.

	
get_refresh_stats()

	Return the measured statistics for timed refresh intervals.

	Returns

	stats : float

The measured rate of actual back end updates in frames per second.

	
get_rgb_image_as_buffer(output=None, format='png', quality=90)

	Get the current image shown in the viewer, with any overlaid
graphics, in a file IO-like object encoded as a bitmap graphics
file.
This should be implemented by subclasses.

	Parameters

	output : a file IO-like object or None

open python IO descriptor or None to have one created

format : str

A string defining the format to save the image. Typically
at least ‘jpeg’ and ‘png’ are supported. (default: ‘png’)

quality: int

The quality metric for saving lossy compressed formats.

	Returns

	buffer : file IO-like object

This will be the one passed in, unless output is None
in which case a BytesIO obejct is returned

	
get_rgb_image_as_bytes(format='png', quality=90)

	Get the current image shown in the viewer, with any overlaid
graphics, in the form of a buffer in the form of bytes.

	Parameters

	format : str

See get_rgb_image_as_buffer().

quality: int

See get_rgb_image_as_buffer().

	Returns

	buffer : bytes

The window contents as a buffer in the form of bytes.

	
get_rgb_image_as_widget(output=None, format='png', quality=90)

	Get the current image shown in the viewer, with any overlaid
graphics, in the form of a image widget in the toolkit of the
back end.

	Parameters

	See :meth:`get_rgb_image_as_buffer`.

	Returns

	widget : object

An image widget object in the viewer’s back end toolkit

	
get_rgb_object(whence=0)

	Create and return RGB slices representing the data
that should be rendered at the current zoom level and pan settings.

	Parameters

	whence : {0, 1, 2, 3}

Optimization flag that reduces the time to create
the RGB object by only recalculating what is necessary:

	New image, pan/scale has changed, or rotation/transform
has changed; Recalculate everything

	Cut levels or similar has changed

	Color mapping has changed

	Graphical overlays have changed

	Returns

	rgbobj : RGBPlanes

RGB object.

	
get_rgb_order()

	Get RGB order.

	Returns

	rgb : str

Returns the order of RGBA planes required by the subclass
to render the canvas properly.

	
get_rgbmap()

	Get the RGB map object used by this instance.

	Returns

	rgbmap : RGBMapper

RGB map.

	
get_rotation()

	Get image rotation angle.

	Returns

	rot_deg : float

Rotation angle in degrees.

	
get_rotation_info()

	Get rotation information.

	Returns

	info : tuple

X and Y positions, and rotation angle in degrees, in that order.

	
get_scale()

	Same as get_scale_max().

	
get_scale_base_xy()

	Get stretch factors.

	Returns

	stretchfactors : tuple

Stretch factors for X and Y, in that order.

	
get_scale_limits()

	Get scale limits.

	Returns

	scale_limits : tuple

Minimum and maximum scale limits, respectively.

	
get_scale_max()

	Get maximum scale factor.

	Returns

	scalefactor : float

Scale factor for X or Y, whichever is larger.

	
get_scale_min()

	Get minimum scale factor.

	Returns

	scalefactor : float

Scale factor for X or Y, whichever is smaller.

	
get_scale_text()

	Report current scaling in human-readable format.

	Returns

	text : str

'<num> x' if enlarged, or '1/<num> x' if shrunken.

	
get_scale_xy()

	Get scale factors.

	Returns

	scalefactors : tuple

Scale factors for X and Y, in that order.

	
get_settings()

	Get the settings used by this instance.

	Returns

	settings : SettingGroup

Settings.

	
get_transforms()

	Get transformations behavior.

	Returns

	transforms : tuple

Selected options for flip_x, flip_y, and swap_xy.

	
get_window_size()

	Get the window size in the underlying implementation.

	Returns

	size : tuple

Window size in the form of (width, height).

	
get_zoom()

	Get zoom level.

	Returns

	zoomlevel : float

Zoom level.

	
get_zoom_algorithm()

	Get zoom algorithm.

	Returns

	name : {‘rate’, ‘step’}

Zoom algorithm.

	
get_zoomrate()

	Get zoom rate.

	Returns

	zoomrate : float

Zoom rate.

	
getwin_array(order='RGB', alpha=1.0, dtype=None)

	Get Numpy data array for display window.

	Parameters

	order : str

The desired order of RGB color layers.

alpha : float

Opacity.

dtype : numpy dtype

Numpy data type desired; defaults to rgb mapper setting.

	Returns

	outarr : ndarray

Numpy data array for display window.

	
getwin_buffer(order='RGB', alpha=1.0, dtype=None)

	Same as getwin_array(), but with the output array converted
to C-order Python bytes.

	
initialize_private_canvas(private_canvas)

	Initialize the private canvas used by this instance.

	
interpolation_change_cb(setting, value)

	Handle callback related to changes in interpolation.

	
invert_cmap()

	Invert the color map.
See ginga.RGBMap.RGBMapper.invert_cmap().

	
is_compound()

	Indicate if canvas object is a compound object.
This can be re-implemented by subclasses that can overplot objects.

	Returns

	status : bool

Currently, this always returns False [https://docs.python.org/3/library/constants.html#False].

	
is_redraw_pending()

	Indicates whether a deferred redraw has been scheduled.

	Returns

	pending : bool

True if a deferred redraw is pending, False otherwise.

	
make_cursor(iconpath, x, y)

	Make a cursor in the viewer’s native widget toolkit.
This should be implemented by subclasses.

	Parameters

	iconpath : str

the path to a PNG image file defining the cursor

x : int

the X position of the center of the cursor hot spot

y : int

the Y position of the center of the cursor hot spot

	
make_timer()

	Return a timer object implemented using the back end.
This should be implemented by subclasses.

	Returns

	timer : a Timer object

	
offset_to_data(off_x, off_y, center=None)

	Get the closest coordinates in the data array to those
in cartesian fixed (non-scaled) canvas coordinates.

	Parameters

	off_x, off_y : float or ndarray

Cartesian canvas coordinates.

	Returns

	coord : tuple

Data coordinates in the form of (x, y).

	
offset_to_window(off_x, off_y)

	Convert data offset to window coordinates.

	Parameters

	off_x, off_y : float or ndarray

Data offsets.

	Returns

	coord : tuple

Offset in window coordinates in the form of (x, y).

	
onscreen_message(text, delay=None, redraw=True)

	Place a message onscreen in the viewer window.
This must be implemented by subclasses.

	Parameters

	text : str

the text to draw in the window

delay : float or None

if None, the message will remain until another message is
set. If a float, specifies the time in seconds before the
message will be erased. (default: None)

redraw : bool

True if the widget should be redrawn right away (so that
the message appears). (default: True)

	
onscreen_message_off()

	Erase any message onscreen in the viewer window.

	
overlay_images(canvas, data, whence=0.0)

	Overlay data from any canvas image objects.

	Parameters

	canvas : DrawingCanvas

Canvas containing possible images to overlay.

data : ndarray

Output array on which to overlay image data.

whence

See get_rgb_object().

	
pan_cb(setting, value)

	Handle callback related to changes in pan.

	
panset_pct(pct_x, pct_y)

	Similar to set_pan(), except that pan positions
are determined by multiplying data dimensions with the given
scale factors, where 1 is 100%.

	
panset_xy(data_x, data_y, no_reset=False)

	Similar to set_pan(), except that input pan positions
are always in data space.

	
position_cursor(data_x, data_y)

	Position the current cursor to a location defined it data coords.
This should be implemented by subclasses.

	Parameters

	data_x : float

the X position to position the cursor in data coords

data_y : float

the X position to position the cursor in data coords

	
recalc_transforms(trcat=None)

	Takes a catalog of transforms (trcat) and builds the chain
of default transforms necessary to do rendering with most backends.

	
redraw(whence=0)

	Redraw the canvas.

	Parameters

	whence

See get_rgb_object().

	
redraw_data(whence=0)

	Render image from RGB map and redraw private canvas.

Note

Do not call this method unless you are implementing a subclass.

	Parameters

	whence

See get_rgb_object().

	
redraw_now(whence=0)

	Redraw the displayed image.

	Parameters

	whence

See get_rgb_object().

	
refresh_timer_cb(timer, flags)

	Refresh timer callback.
This callback will normally only be called internally.

	Parameters

	timer : a Ginga GUI timer

A GUI-based Ginga timer

flags : dict-like

A set of flags controlling the timer

	
render_image(rgbobj, dst_x, dst_y)

	Render image.
This must be implemented by subclasses.

	Parameters

	rgbobj : RGBPlanes

RGB object.

dst_x, dst_y : float

Offsets in screen coordinates.

	
reschedule_redraw(time_sec)

	Reschedule redraw event.
This must be implemented by subclasses.

	Parameters

	time_sec : float

Time, in seconds, to wait.

	
restore_cmap()

	Restores the color map from any rotation, stretch and/or shrinkage.
See ginga.RGBMap.RGBMapper.restore_cmap().

	
restore_contrast()

	Restores the color map from any stretch and/or shrinkage.
See ginga.RGBMap.RGBMapper.reset_sarr().

	
rgbmap_cb(rgbmap)

	Handle callback for when RGB map has changed.

	
rotate(deg)

	Rotate the view of an image in a channel.

Note

Transforming the image is generally faster than rotating,
if rotating in 90 degree increments. Also see transform().

	Parameters

	deg : float

Rotation angle in degrees.

	
rotation_change_cb(setting, value)

	Handle callback related to changes in rotation angle.

	
save_plain_image_as_file(filepath, format='png', quality=90)

	Save the current image shown in the viewer, without any overlaid
graphics, in a file with the specified format and quality.
Typically used for generating thumbnails.
This should be implemented by subclasses.

	Parameters

	filepath : str

path of the file to write

format : str

See get_rgb_image_as_buffer().

quality: int

See get_rgb_image_as_buffer().

	
save_profile(**params)

	Save the given parameters into profile settings.

	Parameters

	params : dict

Keywords and values to be saved.

	
save_rgb_image_as_file(filepath, format='png', quality=90)

	Save the current image shown in the viewer, with any overlaid
graphics, in a file with the specified format and quality.
This can be overridden by subclasses.

	Parameters

	filepath : str

path of the file to write

format : str

See get_rgb_image_as_buffer().

quality: int

See get_rgb_image_as_buffer().

	
scale_and_shift_cmap(scale_pct, shift_pct)

	Stretch and/or shrink the color map.
See ginga.RGBMap.RGBMapper.scale_and_shift().

	
scale_cb(setting, value)

	Handle callback related to image scaling.

	
scale_to(scale_x, scale_y, no_reset=False)

	Scale the image in a channel.
This only changes the relevant settings; The image is not modified.
Also see zoom_to().

	Parameters

	scale_x, scale_y : float

Scaling factors for the image in the X and Y axes, respectively.

no_reset : bool

Do not reset autozoom setting.

	
set_autocenter(option)

	Set autocenter behavior.

	Parameters

	option : {‘on’, ‘override’, ‘once’, ‘off’}

Option for auto-center behavior. A list of acceptable options can
also be obtained by get_autocenter_options().

	Raises

	ginga.ImageView.ImageViewError

Invalid option.

	
set_autocut_params(method, **params)

	Set auto-cut parameters.

	Parameters

	method : str

Auto-cut algorithm. A list of acceptable options can
be obtained by get_autocut_methods().

params : dict

Algorithm-specific keywords and values.

	
set_autocuts(autocuts)

	Set the auto-cut algorithm.

	Parameters

	autocuts : subclass of AutoCutsBase

An object that implements the desired auto-cut algorithm.

	
set_bg(r, g, b)

	Set the background color.

	Parameters

	r, g, b : float

RGB values, which should be between 0 and 1, inclusive.

	
set_calg(dist)

	Set color distribution algorithm.
See ginga.RGBMap.RGBMapper.set_dist().

	
set_canvas(canvas, private_canvas=None)

	Set the canvas object.

	Parameters

	canvas : DrawingCanvas

Canvas object.

private_canvas : DrawingCanvas or None [https://docs.python.org/3/library/constants.html#None]

Private canvas object. If not given, this is the same as canvas.

	
set_cmap(cm)

	Set color map.
See ginga.RGBMap.RGBMapper.set_cmap().

	
set_color_algorithm(calg_name, **kwdargs)

	Set the color distribution algorithm.

Available color distribution algorithm names can be discovered using
ginga.ColorDist.get_dist_names().

	Parameters

	calg_name : str

The name of a color distribution algorithm.

kwdargs : dict

Keyword arguments for color distribution object
(see ColorDist).

	
set_color_map(cmap_name)

	Set the color map.

Available color map names can be discovered using
get_names().

	Parameters

	cmap_name : str

The name of a color map.

	
set_coordmap(key, mapper)

	Set coordinate mapper.

	Parameters

	key : str

Name of the coordinate mapper.

mapper

Coordinate mapper object (see ginga.canvas.coordmap).

	
set_cursor(cursor)

	Set the cursor in the viewer widget.
This should be implemented by subclasses.

	Parameters

	cursor : object

a cursor object in the back end’s toolkit

	
set_data(data, metadata=None)

	Set an image to be displayed by providing raw data.

This is a convenience method for first constructing an image
with AstroImage and then calling set_image().

	Parameters

	data : ndarray

This should be at least a 2D Numpy array.

metadata : dict or None [https://docs.python.org/3/library/constants.html#None]

Image metadata mapping keywords to their respective values.

	
set_desired_size(width, height)

	See set_window_size().

	
set_enter_focus(tf)

	Determine whether the viewer widget should take focus the
cursor enters the window.

	Parameters

	tf : bool

If True the widget will grab focus when the cursor moves into
the window.

	
set_fg(r, g, b)

	Set the foreground color.

	Parameters

	r, g, b : float

RGB values, which should be between 0 and 1, inclusive.

	
set_image(image, add_to_canvas=True)

	Set an image to be displayed.

If there is no error, the 'image-unset' and 'image-set'
callbacks will be invoked.

	Parameters

	image : AstroImage or RGBImage

Image object.

add_to_canvas : bool

Add image to canvas.

	
set_imap(im)

	Set intensity map.
See ginga.RGBMap.RGBMapper.set_imap().

	
set_intensity_map(imap_name)

	Set the intensity map.

Available intensity map names can be discovered using
ginga.imap.get_names().

	Parameters

	imap_name : str

The name of an intensity map.

	
set_limits(limits, coord='data')

	Set the bounding box of the viewer extents.

	Parameters

	limits : tuple or None

A tuple setting the extents of the viewer in the form of
(ll_pt, ur_pt).

	
set_name(name)

	Set viewer name.

	
set_onscreen_message(text, redraw=True)

	Called by a subclass to update the onscreen message.

	Parameters

	text : str

The text to show in the display.

	
set_pan(pan_x, pan_y, coord='data', no_reset=False)

	Set pan behavior.

	Parameters

	pan_x, pan_y : float

Pan positions.

coord : {‘data’, ‘wcs’}

Indicates whether the given pan positions are in data or WCS space.

no_reset : bool

Do not reset autocenter setting.

	
set_redraw_lag(lag_sec)

	Set lag time for redrawing the canvas.

	Parameters

	lag_sec : float

Number of seconds to wait.

	
set_refresh_rate(fps)

	Set the refresh rate for redrawing the canvas at a timed interval.

	Parameters

	fps : float

Desired rate in frames per second.

	
set_rgbmap(rgbmap)

	Set RGB map object used by this instance.
It controls how the values in the image are mapped to color.

	Parameters

	rgbmap : RGBMapper

RGB map.

	
set_scale_base_xy(scale_x_base, scale_y_base)

	Set stretch factors.

	Parameters

	scale_x_base, scale_y_base : float

Stretch factors for X and Y, respectively.

	
set_scale_limits(scale_min, scale_max)

	Set scale limits.

	Parameters

	scale_min, scale_max : float

Minimum and maximum scale limits, respectively.

	
set_window_size(width, height)

	Report the size of the window to display the image.

Callbacks

Will call any callbacks registered for the 'configure' event.
Callbacks should have a method signature of:

(viewer, width, height, ...)

Note

This is called by the subclass with width and height
as soon as the actual dimensions of the allocated window are known.

	Parameters

	width : int

The width of the window in pixels.

height : int

The height of the window in pixels.

	
set_zoom_algorithm(name)

	Set zoom algorithm.

	Parameters

	name : {‘rate’, ‘step’}

Zoom algorithm.

	
set_zoomrate(zoomrate)

	Set zoom rate.

	Parameters

	zoomrate : float

Zoom rate.

	
shift_cmap(pct)

	Shift color map.
See ginga.RGBMap.RGBMapper.shift().

	
show_color_bar(tf, side='bottom')

	

	
show_focus_indicator(tf, color='white')

	

	
show_mode_indicator(tf, corner='ur')

	

	
show_pan_mark(tf, color='red')

	

	
start_refresh()

	Start redrawing the canvas at the previously set timed interval.

	
stop_refresh()

	Stop redrawing the canvas at the previously set timed interval.

	
switch_cursor(cname)

	Switch the viewer’s cursor to the one defined under a name.

	Parameters

	cname : str

name of the cursor to switch to.

	
take_focus()

	Have the widget associated with this viewer take the keyboard
focus.
This should be implemented by subclasses, if they have a widget that
can take focus.

	
transform(flip_x, flip_y, swap_xy)

	Transform view of the image.

Note

Transforming the image is generally faster than rotating,
if rotating in 90 degree increments. Also see rotate().

	Parameters

	flipx, flipy : bool

If True [https://docs.python.org/3/library/constants.html#True], flip the image in the X and Y axes, respectively

swapxy : bool

If True [https://docs.python.org/3/library/constants.html#True], swap the X and Y axes.

	
transform_cb(setting, value)

	Handle callback related to changes in transformations.

	
update_image()

	Update image.
This must be implemented by subclasses.

	
window_has_origin_upper()

	Indicate if window of backend toolkit is implemented with an
origin up or down.

	Returns

	res : bool

Returns True [https://docs.python.org/3/library/constants.html#True] if the origin is up, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	
window_to_offset(win_x, win_y)

	Reverse of offset_to_window().

	
zoom_fit(no_reset=False)

	Zoom to fit display window.
Also see zoom_to().

	Parameters

	no_reset : bool

Do not reset autozoom setting.

	
zoom_in()

	Zoom in a level.
Also see zoom_to().

	
zoom_out()

	Zoom out a level.
Also see zoom_to().

	
zoom_to(zoomlevel, no_reset=False)

	Set zoom level in a channel.
This only changes the relevant settings; The image is not modified.
Also see scale_to().

Note

In addition to the given zoom level, other zoom settings are
defined for the channel in preferences.

	Parameters

	zoomlevel : int

The zoom level to zoom the image.
Negative value to zoom out; positive to zoom in.

no_reset : bool

Do not reset autozoom setting.

	
zoomalg_change_cb(setting, value)

	Handle callback related to changes in zoom.

ReferenceViewer

	
class ginga.rv.main.ReferenceViewer(layout=['seq', {}, ['vbox', {'width': 1400, 'height': 700, 'name': 'top'}, {'stretch': 0, 'row': ['hbox', {'name': 'menu'}]}, {'stretch': 1, 'row': ['hpanel', {'name': 'hpnl'}, ['ws', {'wstype': 'tabs', 'name': 'left', 'width': 300, 'height': -1, 'group': 2}, [('Info', ['vpanel', {}, ['ws', {'wstype': 'stack', 'group': 3, 'height': 250, 'name': 'uleft'}], ['ws', {'wstype': 'tabs', 'group': 3, 'height': 330, 'name': 'lleft'}]])]], ['vbox', {'width': 600, 'name': 'main'}, {'stretch': 1, 'row': ['ws', {'wstype': 'tabs', 'group': 1, 'use_toolbar': True, 'name': 'channels'}]}, {'stretch': 0, 'row': ['ws', {'wstype': 'stack', 'group': 99, 'name': 'cbar'}]}, {'stretch': 0, 'row': ['ws', {'wstype': 'stack', 'group': 99, 'name': 'readout'}]}, {'stretch': 0, 'row': ['ws', {'wstype': 'stack', 'group': 99, 'name': 'operations'}]}], ['ws', {'wstype': 'tabs', 'name': 'right', 'width': 400, 'height': -1, 'group': 2}, [('Dialogs', ['ws', {'wstype': 'tabs', 'group': 2, 'name': 'dialogs'}])]]]}, {'stretch': 0, 'row': ['ws', {'wstype': 'stack', 'group': 2, 'height': 40, 'name': 'toolbar'}]}, {'stretch': 0, 'row': ['hbox', {'name': 'status'}]}]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class exists solely to be able to customize the reference
viewer startup.

Methods Summary

	add_default_options(optprs)

	Adds the default reference viewer startup options to an OptionParser instance optprs.

	add_default_plugins([except_global, …])

	Add the ginga-distributed default set of plugins to the reference viewer.

	add_global_plugin(module_name, ws_name[, …])

	

	add_global_plugin_spec(spec)

	

	add_local_plugin(module_name, ws_name[, …])

	

	add_local_plugin_spec(spec)

	

	add_plugin_spec(spec)

	

	add_separately_distributed_plugins()

	

	clear_default_plugins()

	

	main(options, args)

	Main routine for running the reference viewer.

Methods Documentation

	
add_default_options(optprs)

	Adds the default reference viewer startup options to an
OptionParser instance optprs.

	
add_default_plugins(except_global=[], except_local=[])

	Add the ginga-distributed default set of plugins to the
reference viewer.

	
add_global_plugin(module_name, ws_name, path=None, klass=None, category='Global', tab_name=None, start_plugin=True, pfx=None)

	

	
add_global_plugin_spec(spec)

	

	
add_local_plugin(module_name, ws_name, path=None, klass=None, pfx=None, category=None)

	

	
add_local_plugin_spec(spec)

	

	
add_plugin_spec(spec)

	

	
add_separately_distributed_plugins()

	

	
clear_default_plugins()

	

	
main(options, args)

	Main routine for running the reference viewer.

options is a OptionParser object that has been populated with
values from parsing the command line. It should at least include
the options from add_default_options()

args is a list of arguments to the viewer after parsing out
options. It should contain a list of files or URLs to load.

hmsToDeg

	
ginga.util.wcs.hmsToDeg(h, m, s)

	Convert RA hours, minutes, seconds into an angle in degrees.

dmsToDeg

	
ginga.util.wcs.dmsToDeg(sign, deg, min, sec)

	Convert dec sign, degrees, minutes, seconds into a signed angle in
degrees.

decTimeToDeg

	
ginga.util.wcs.decTimeToDeg(sign_sym, deg, min, sec)

	Convert dec sign, degrees, minutes, seconds into a signed angle in
degrees.

sign_sym may represent negative as either ‘-‘ or numeric -1.

degToHms

	
ginga.util.wcs.degToHms(ra)

	Converts the ra (in degrees) to HMS three tuple.
H and M are in integer and the S part is in float.

degToDms

	
ginga.util.wcs.degToDms(dec, isLatitude=True)

	Convert the dec, in degrees, to an (sign,D,M,S) tuple.
D and M are integer, and sign and S are float.

arcsecToDeg

	
ginga.util.wcs.arcsecToDeg(arcsec)

	Convert numeric arcseconds (aka DMS seconds) to degrees of arc.

hmsStrToDeg

	
ginga.util.wcs.hmsStrToDeg(ra)

	Convert a string representation of RA into a float in degrees.

dmsStrToDeg

	
ginga.util.wcs.dmsStrToDeg(dec)

	Convert a string representation of DEC into a float in degrees.

raDegToString

	
ginga.util.wcs.raDegToString(ra_deg, format='%02d:%02d:%06.3f')

	

decDegToString

	
ginga.util.wcs.decDegToString(dec_deg, format='%s%02d:%02d:%05.2f')

	

trans_coeff

	
ginga.util.wcs.trans_coeff(eq, x, y, z)

	This function is provided by MOKA2 Development Team (1996.xx.xx)
and used in SOSS system.

eqToEq2000

	
ginga.util.wcs.eqToEq2000(ra_deg, dec_deg, eq)

	Convert Eq to Eq 2000.

get_xy_rotation_and_scale

	
ginga.util.wcs.get_xy_rotation_and_scale(header)

	CREDIT: See IDL code at
http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library32.html?GETROT

get_rotation_and_scale

	
ginga.util.wcs.get_rotation_and_scale(header, skew_threshold=0.001)

	Calculate rotation and CDELT.

get_relative_orientation

	
ginga.util.wcs.get_relative_orientation(image, ref_image)

	Computes the relative orientation and scale of an image to a reference
image.

	Parameters

	image

AstroImage based object

ref_image

AstroImage based object

	Returns

	result

Bunch object containing the relative scale in x and y
and the relative rotation in degrees.

simple_wcs

	
ginga.util.wcs.simple_wcs(px_x, px_y, ra_deg, dec_deg, px_scale_deg_px, rot_deg, cdbase=[1, 1])

	Calculate a set of WCS keywords for a 2D simple instrument FITS
file with a ‘standard’ RA/DEC pixel projection.

	Parameters

	px_x

(ZERO-based) reference pixel of field in X
(usually center of field)

px_y

(ZERO-based) reference pixel of field in Y
(usually center of field)

ra_deg

RA (in deg) for the reference point

dec_deg

DEC (in deg) for the reference point

px_scale_deg_px

Pixel scale (deg/pixel); can be a tuple for different x,y scales

rot_deg

Rotation angle of the field (in deg)

cdbase

CD base

	Returns

	res : dict

Ordered dictionary object containing WCS headers.

deg2fmt

	
ginga.util.wcs.deg2fmt(ra_deg, dec_deg, format)

	Format coordinates.

dispos

	
ginga.util.wcs.dispos(dra0, decd0, dra, decd)

	Compute distance and position angle solving a spherical
triangle (no approximations).

Source/credit: Skycat
Author: A.P. Martinez

	Parameters

	dra0 : float

Center RA in decimal degrees.

decd0 : float

Center DEC in decimal degrees.

dra : float

Point RA in decimal degrees.

decd : float

Point DEC in decimal degrees.

	Returns

	phi : float

Phi in degrees (East of North).

dist : float

Distance in arcmin.

deltaStarsRaDecDeg1

	
ginga.util.wcs.deltaStarsRaDecDeg1(ra1_deg, dec1_deg, ra2_deg, dec2_deg)

	Spherical triangulation.

deltaStarsRaDecDeg2

	
ginga.util.wcs.deltaStarsRaDecDeg2(ra1_deg, dec1_deg, ra2_deg, dec2_deg)

	

get_starsep_RaDecDeg

	
ginga.util.wcs.get_starsep_RaDecDeg(ra1_deg, dec1_deg, ra2_deg, dec2_deg)

	Calculate separation.

add_offset_radec

	
ginga.util.wcs.add_offset_radec(ra_deg, dec_deg, delta_deg_ra, delta_deg_dec)

	Algorithm to compute RA/Dec from RA/Dec base position plus tangent
plane offsets.

get_RaDecOffsets

	
ginga.util.wcs.get_RaDecOffsets(ra1_deg, dec1_deg, ra2_deg, dec2_deg)

	Calculate offset.

lon_to_deg

	
ginga.util.wcs.lon_to_deg(lon)

	Convert longitude to degrees.

lat_to_deg

	
ginga.util.wcs.lat_to_deg(lat)

	Convert latitude to degrees.

 Python Module Index

 c |
 i |
 r |
 u

 		 	

 		
 c	

 	[image: -]
 	
 ginga.canvas	

 	
 	
 ginga.canvas.CanvasMixin	

 	
 	
 ginga.canvas.CanvasObject	

 	
 	
 ginga.canvas.CompoundMixin	

 	
 	
 ginga.canvas.coordmap	

 	
 	
 ginga.canvas.DrawingMixin	

 	
 	
 ginga.canvas.types.layer	

 		 	

 		
 i	

 	
 	
 ginga.ImageView	

 		 	

 		
 r	

 	[image: -]
 	
 ginga.rv	

 	
 	
 ginga.rv.main	

 	
 	
 ginga.rv.plugins.Blink	

 	
 	
 ginga.rv.plugins.Catalogs	

 	
 	
 ginga.rv.plugins.ChangeHistory	

 	
 	
 ginga.rv.plugins.Colorbar	

 	
 	
 ginga.rv.plugins.ColorMapPicker	

 	
 	
 ginga.rv.plugins.Command	

 	
 	
 ginga.rv.plugins.Compose	

 	
 	
 ginga.rv.plugins.Contents	

 	
 	
 ginga.rv.plugins.Crosshair	

 	
 	
 ginga.rv.plugins.Cursor	

 	
 	
 ginga.rv.plugins.Cuts	

 	
 	
 ginga.rv.plugins.Drawing	

 	
 	
 ginga.rv.plugins.Errors	

 	
 	
 ginga.rv.plugins.FBrowser	

 	
 	
 ginga.rv.plugins.Header	

 	
 	
 ginga.rv.plugins.Histogram	

 	
 	
 ginga.rv.plugins.Info	

 	
 	
 ginga.rv.plugins.LineProfile	

 	
 	
 ginga.rv.plugins.Log	

 	
 	
 ginga.rv.plugins.Mosaic	

 	
 	
 ginga.rv.plugins.MultiDim	

 	
 	
 ginga.rv.plugins.Operations	

 	
 	
 ginga.rv.plugins.Overlays	

 	
 	
 ginga.rv.plugins.Pan	

 	
 	
 ginga.rv.plugins.Pick	

 	
 	
 ginga.rv.plugins.Pipeline	

 	
 	
 ginga.rv.plugins.PixTable	

 	
 	
 ginga.rv.plugins.PlotTable	

 	
 	
 ginga.rv.plugins.Preferences	

 	
 	
 ginga.rv.plugins.RC	

 	
 	
 ginga.rv.plugins.Ruler	

 	
 	
 ginga.rv.plugins.SAMP	

 	
 	
 ginga.rv.plugins.SaveImage	

 	
 	
 ginga.rv.plugins.ScreenShot	

 	
 	
 ginga.rv.plugins.Thumbs	

 	
 	
 ginga.rv.plugins.Toolbar	

 	
 	
 ginga.rv.plugins.TVMark	

 	
 	
 ginga.rv.plugins.TVMask	

 	
 	
 ginga.rv.plugins.WBrowser	

 	
 	
 ginga.rv.plugins.WCSAxes	

 	
 	
 ginga.rv.plugins.WCSMatch	

 	
 	
 ginga.rv.plugins.Zoom	

 		 	

 		
 u	

 	[image: -]
 	
 ginga.util	

 	
 	
 ginga.util.wcs	

 	
 	
 ginga.util.wcsmod	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	add() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	add_default_options() (ginga.rv.main.ReferenceViewer method)

 	add_default_plugins() (ginga.rv.main.ReferenceViewer method)

 	add_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	add_global_plugin() (ginga.rv.main.ReferenceViewer method)

 	add_global_plugin_spec() (ginga.rv.main.ReferenceViewer method)

 	add_local_plugin() (ginga.rv.main.ReferenceViewer method)

 	add_local_plugin_spec() (ginga.rv.main.ReferenceViewer method)

 	add_object() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	
 	add_offset_radec() (in module ginga.util.wcs)

 	add_plugin_spec() (ginga.rv.main.ReferenceViewer method)

 	add_separately_distributed_plugins() (ginga.rv.main.ReferenceViewer method)

 	addObject() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	apply_profile_or_settings() (ginga.ImageView.ImageViewBase method)

 	apply_transforms() (ginga.ImageView.ImageViewBase method)

 	arcsecToDeg() (in module ginga.util.wcs)

 	auto_levels() (ginga.ImageView.ImageViewBase method)

 	auto_levels_cb() (ginga.ImageView.ImageViewBase method)

 	auto_orient() (ginga.ImageView.ImageViewBase method)

C

 	
 	calc_dual_scale_from_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	calc_offsets() (ginga.canvas.coordmap.OffsetMapper method)

 	calc_radius() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	calc_rotation_from_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	calc_scale_from_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	calc_vertexes() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	Canvas (class in ginga.canvas.types.layer)

 	canvas_changed_cb() (ginga.ImageView.ImageViewBase method)

 	canvascoords() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.ImageView.ImageViewBase method)

 	CanvasMixin (class in ginga.canvas.CanvasMixin)

 	CanvasObjectBase (class in ginga.canvas.CanvasObject)

 	CartesianMapper (class in ginga.canvas.coordmap)

 	center_cursor() (ginga.ImageView.ImageViewBase method)

 	center_image() (ginga.ImageView.ImageViewBase method)

 	check_cursor_location() (ginga.ImageView.ImageViewBase method)

 	clear() (ginga.ImageView.ImageViewBase method)

 	
 	clear_default_plugins() (ginga.rv.main.ReferenceViewer method)

 	clear_selected() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	cmap_changed_cb() (ginga.ImageView.ImageViewBase method)

 	CompoundMixin (class in ginga.canvas.CompoundMixin)

 	CompoundObject (class in ginga.canvas.types.layer)

 	configure() (ginga.ImageView.ImageViewBase method)

 	contains() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	contains_arr() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	contains_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	contains_pts() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	convert_mapper() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	convert_via_profile() (ginga.ImageView.ImageViewBase method)

 	copy_attributes() (ginga.ImageView.ImageViewBase method)

 	copy_to_dst() (ginga.ImageView.ImageViewBase method)

 	cut_levels() (ginga.ImageView.ImageViewBase method)

 	cut_levels_cb() (ginga.ImageView.ImageViewBase method)

D

 	
 	data_to() (ginga.canvas.coordmap.CartesianMapper method)

 	(ginga.canvas.coordmap.DataMapper method)

 	(ginga.canvas.coordmap.NativeMapper method)

 	(ginga.canvas.coordmap.OffsetMapper method)

 	(ginga.canvas.coordmap.WCSMapper method)

 	(ginga.canvas.coordmap.WindowMapper method)

 	data_to_offset() (ginga.ImageView.ImageViewBase method)

 	DataMapper (class in ginga.canvas.coordmap)

 	decDegToString() (in module ginga.util.wcs)

 	decTimeToDeg() (in module ginga.util.wcs)

 	define_cursor() (ginga.ImageView.ImageViewBase method)

 	deg2fmt() (in module ginga.util.wcs)

 	degToDms() (in module ginga.util.wcs)

 	degToHms() (in module ginga.util.wcs)

 	delayed_redraw() (ginga.ImageView.ImageViewBase method)

 	delete_all_objects() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	delete_object() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	delete_object_by_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	delete_objects() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	delete_objects_by_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	deleteAllObjects() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	
 	deleteObject() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	deleteObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	deleteObjects() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	deleteObjectsByTag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	deltaStarsRaDecDeg1() (in module ginga.util.wcs)

 	deltaStarsRaDecDeg2() (in module ginga.util.wcs)

 	dispos() (in module ginga.util.wcs)

 	dmsStrToDeg() (in module ginga.util.wcs)

 	dmsToDeg() (in module ginga.util.wcs)

 	draw() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	(ginga.canvas.DrawingMixin.DrawingMixin method)

 	draw_arrowhead() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	draw_caps() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	draw_edit() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	draw_motion() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	draw_poly_add() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	draw_poly_delete() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	draw_start() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	draw_stop() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	DrawingCanvas (class in ginga.canvas.types.layer)

 	DrawingMixin (class in ginga.canvas.DrawingMixin)

E

 	
 	edit_delete() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_delete_cb() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_motion() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_poly_add() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_poly_delete() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_rotate() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_scale() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_select() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	
 	edit_start() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	edit_stop() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	enable_auto_orient() (ginga.ImageView.ImageViewBase method)

 	enable_autocenter() (ginga.ImageView.ImageViewBase method)

 	enable_autocuts() (ginga.ImageView.ImageViewBase method)

 	enable_autozoom() (ginga.ImageView.ImageViewBase method)

 	enable_draw() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	enable_edit() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	eqToEq2000() (in module ginga.util.wcs)

G

 	
 	get_autocenter_options() (ginga.ImageView.ImageViewBase method)

 	get_autocut_methods() (ginga.ImageView.ImageViewBase method)

 	get_autocuts_options() (ginga.ImageView.ImageViewBase method)

 	get_autozoom_options() (ginga.ImageView.ImageViewBase method)

 	get_bbox() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_bg() (ginga.ImageView.ImageViewBase method)

 	get_canvas() (ginga.ImageView.ImageViewBase method)

 	get_canvas_image() (ginga.ImageView.ImageViewBase method)

 	get_canvas_pt() (ginga.ImageView.ImageViewBase method)

 	get_canvas_type() (in module ginga.canvas.CanvasObject)

 	get_canvas_types() (in module ginga.canvas.CanvasObject)

 	get_canvas_xy() (ginga.ImageView.ImageViewBase method)

 	get_center() (ginga.ImageView.ImageViewBase method)

 	get_center_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_color_algorithms() (ginga.ImageView.ImageViewBase method)

 	get_coordmap() (ginga.ImageView.ImageViewBase method)

 	get_cpoints() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_cursor() (ginga.ImageView.ImageViewBase method)

 	get_cut_levels() (ginga.ImageView.ImageViewBase method)

 	get_data() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.ImageView.ImageViewBase method)

 	get_data_pct() (ginga.ImageView.ImageViewBase method)

 	get_data_points() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_data_pt() (ginga.ImageView.ImageViewBase method)

 	get_data_size() (ginga.ImageView.ImageViewBase method)

 	get_data_xy() (ginga.ImageView.ImageViewBase method)

 	get_datarect() (ginga.ImageView.ImageViewBase method)

 	get_desired_size() (ginga.ImageView.ImageViewBase method)

 	get_dims() (ginga.ImageView.ImageViewBase method)

 	get_draw_class() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_draw_classes() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_drawparams() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_drawtype() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_drawtypes() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_edit_object() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_edit_points() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_fg() (ginga.ImageView.ImageViewBase method)

 	get_image() (ginga.ImageView.ImageViewBase method)

 	get_image_as_array() (ginga.ImageView.ImageViewBase method)

 	get_image_as_buffer() (ginga.ImageView.ImageViewBase method)

 	get_items_at() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_last_data_xy() (ginga.ImageView.ImageViewBase method)

 	get_last_win_xy() (ginga.ImageView.ImageViewBase method)

 	get_limits() (ginga.ImageView.ImageViewBase method)

 	get_llur() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_logger() (ginga.ImageView.ImageViewBase method)

 	get_move_scale_rotate_pts() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_num_points() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_object_by_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	get_objects() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_objects_by_kind() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_objects_by_kinds() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_objects_by_tag_pfx() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	get_pan() (ginga.ImageView.ImageViewBase method)

 	get_pan_rect() (ginga.ImageView.ImageViewBase method)

 	get_params_metadata() (ginga.canvas.types.layer.Canvas class method)

 	(ginga.canvas.types.layer.CompoundObject class method)

 	get_pixel_distance() (ginga.ImageView.ImageViewBase method)

 	get_plain_image_as_widget() (ginga.ImageView.ImageViewBase method)

 	get_point_by_index() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_points() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_private_canvas() (ginga.ImageView.ImageViewBase method)

 	get_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	get_RaDecOffsets() (in module ginga.util.wcs)

 	get_reference_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	get_refresh_stats() (ginga.ImageView.ImageViewBase method)

 	get_relative_orientation() (in module ginga.util.wcs)

 	get_rgb_image_as_buffer() (ginga.ImageView.ImageViewBase method)

 	get_rgb_image_as_bytes() (ginga.ImageView.ImageViewBase method)

 	get_rgb_image_as_widget() (ginga.ImageView.ImageViewBase method)

 	get_rgb_object() (ginga.ImageView.ImageViewBase method)

 	get_rgb_order() (ginga.ImageView.ImageViewBase method)

 	get_rgbmap() (ginga.ImageView.ImageViewBase method)

 	get_rotation() (ginga.ImageView.ImageViewBase method)

 	get_rotation_and_scale() (in module ginga.util.wcs)

 	
 	get_rotation_info() (ginga.ImageView.ImageViewBase method)

 	get_scale() (ginga.ImageView.ImageViewBase method)

 	get_scale_base_xy() (ginga.ImageView.ImageViewBase method)

 	get_scale_limits() (ginga.ImageView.ImageViewBase method)

 	get_scale_max() (ginga.ImageView.ImageViewBase method)

 	get_scale_min() (ginga.ImageView.ImageViewBase method)

 	get_scale_text() (ginga.ImageView.ImageViewBase method)

 	get_scale_xy() (ginga.ImageView.ImageViewBase method)

 	get_selected() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	get_settings() (ginga.ImageView.ImageViewBase method)

 	get_starsep_RaDecDeg() (in module ginga.util.wcs)

 	get_tags() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	get_tags_by_tag_pfx() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	get_transforms() (ginga.ImageView.ImageViewBase method)

 	get_window_size() (ginga.ImageView.ImageViewBase method)

 	get_xy_rotation_and_scale() (in module ginga.util.wcs)

 	get_zoom() (ginga.ImageView.ImageViewBase method)

 	get_zoom_algorithm() (ginga.ImageView.ImageViewBase method)

 	get_zoomrate() (ginga.ImageView.ImageViewBase method)

 	getDrawClass() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	getItemsAt() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	getObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	getObjects() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	getObjectsByTagpfx() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	getTagsByTagpfx() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	getwin_array() (ginga.ImageView.ImageViewBase method)

 	getwin_buffer() (ginga.ImageView.ImageViewBase method)

 	ginga.canvas.CanvasMixin (module)

 	ginga.canvas.CanvasObject (module)

 	ginga.canvas.CompoundMixin (module)

 	ginga.canvas.coordmap (module)

 	ginga.canvas.DrawingMixin (module)

 	ginga.canvas.types.layer (module)

 	ginga.ImageView (module)

 	ginga.rv.main (module)

 	ginga.rv.plugins.Blink (module)

 	ginga.rv.plugins.Catalogs (module)

 	ginga.rv.plugins.ChangeHistory (module)

 	ginga.rv.plugins.Colorbar (module)

 	ginga.rv.plugins.ColorMapPicker (module)

 	ginga.rv.plugins.Command (module)

 	ginga.rv.plugins.Compose (module)

 	ginga.rv.plugins.Contents (module)

 	ginga.rv.plugins.Crosshair (module)

 	ginga.rv.plugins.Cursor (module)

 	ginga.rv.plugins.Cuts (module)

 	ginga.rv.plugins.Drawing (module)

 	ginga.rv.plugins.Errors (module)

 	ginga.rv.plugins.FBrowser (module)

 	ginga.rv.plugins.Header (module)

 	ginga.rv.plugins.Histogram (module)

 	ginga.rv.plugins.Info (module)

 	ginga.rv.plugins.LineProfile (module)

 	ginga.rv.plugins.Log (module)

 	ginga.rv.plugins.Mosaic (module)

 	ginga.rv.plugins.MultiDim (module)

 	ginga.rv.plugins.Operations (module)

 	ginga.rv.plugins.Overlays (module)

 	ginga.rv.plugins.Pan (module)

 	ginga.rv.plugins.Pick (module)

 	ginga.rv.plugins.Pipeline (module)

 	ginga.rv.plugins.PixTable (module)

 	ginga.rv.plugins.PlotTable (module)

 	ginga.rv.plugins.Preferences (module)

 	ginga.rv.plugins.RC (module)

 	ginga.rv.plugins.Ruler (module)

 	ginga.rv.plugins.SAMP (module)

 	ginga.rv.plugins.SaveImage (module)

 	ginga.rv.plugins.ScreenShot (module)

 	ginga.rv.plugins.Thumbs (module)

 	ginga.rv.plugins.Toolbar (module)

 	ginga.rv.plugins.TVMark (module)

 	ginga.rv.plugins.TVMask (module)

 	ginga.rv.plugins.WBrowser (module)

 	ginga.rv.plugins.WCSAxes (module)

 	ginga.rv.plugins.WCSMatch (module)

 	ginga.rv.plugins.Zoom (module)

 	ginga.util.wcs (module)

 	ginga.util.wcsmod (module)

H

 	
 	has_object() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	has_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	
 	hmsStrToDeg() (in module ginga.util.wcs)

 	hmsToDeg() (in module ginga.util.wcs)

I

 	
 	ImageViewBase (class in ginga.ImageView)

 	inherit_from() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	initialize() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	initialize_private_canvas() (ginga.ImageView.ImageViewBase method)

 	interpolation_change_cb() (ginga.ImageView.ImageViewBase method)

 	invert_cmap() (ginga.ImageView.ImageViewBase method)

 	
 	is_compound() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.ImageView.ImageViewBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	is_drawing() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	is_editing() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	is_redraw_pending() (ginga.ImageView.ImageViewBase method)

 	is_selected() (ginga.canvas.DrawingMixin.DrawingMixin method)

L

 	
 	lat_to_deg() (in module ginga.util.wcs)

 	lon_to_deg() (in module ginga.util.wcs)

 	lookup_object_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	
 	lower_object() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	lower_object_by_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	lowerObject() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	lowerObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin method)

M

 	
 	main() (ginga.rv.main.ReferenceViewer method)

 	make_cursor() (ginga.ImageView.ImageViewBase method)

 	make_timer() (ginga.ImageView.ImageViewBase method)

 	move_delta() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	
 	move_delta_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	move_to() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	move_to_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

N

 	
 	NativeMapper (class in ginga.canvas.coordmap)

 	
 	num_selected() (ginga.canvas.DrawingMixin.DrawingMixin method)

O

 	
 	offset_pt() (ginga.canvas.coordmap.CartesianMapper method)

 	(ginga.canvas.coordmap.DataMapper method)

 	(ginga.canvas.coordmap.NativeMapper method)

 	(ginga.canvas.coordmap.OffsetMapper method)

 	(ginga.canvas.coordmap.WCSMapper method)

 	(ginga.canvas.coordmap.WindowMapper method)

 	
 	offset_to_data() (ginga.ImageView.ImageViewBase method)

 	offset_to_window() (ginga.ImageView.ImageViewBase method)

 	OffsetMapper (class in ginga.canvas.coordmap)

 	onscreen_message() (ginga.ImageView.ImageViewBase method)

 	onscreen_message_off() (ginga.ImageView.ImageViewBase method)

 	overlay_images() (ginga.ImageView.ImageViewBase method)

P

 	
 	pan_cb() (ginga.ImageView.ImageViewBase method)

 	panset_pct() (ginga.ImageView.ImageViewBase method)

 	panset_xy() (ginga.ImageView.ImageViewBase method)

 	pick_hover() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	pick_key() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	pick_motion() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	
 	pick_start() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	pick_stop() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	point_within_line() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	point_within_radius() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	position_cursor() (ginga.ImageView.ImageViewBase method)

 	process_drawing() (ginga.canvas.DrawingMixin.DrawingMixin method)

R

 	
 	raDegToString() (in module ginga.util.wcs)

 	raise_object() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	raise_object_by_tag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	raiseObject() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	raiseObjectByTag() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	recalc_transforms() (ginga.ImageView.ImageViewBase method)

 	redraw() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	(ginga.ImageView.ImageViewBase method)

 	redraw_data() (ginga.ImageView.ImageViewBase method)

 	redraw_now() (ginga.ImageView.ImageViewBase method)

 	ReferenceViewer (class in ginga.rv.main)

 	refresh_timer_cb() (ginga.ImageView.ImageViewBase method)

 	register_canvas_type() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	(in module ginga.canvas.CanvasObject)

 	register_canvas_types() (in module ginga.canvas.CanvasObject)

 	register_for_cursor_drawing() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	render_image() (ginga.ImageView.ImageViewBase method)

 	reorder_layers() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	rerotate_by_deg() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	
 	rescale_by() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	rescale_by_factors() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	reschedule_redraw() (ginga.ImageView.ImageViewBase method)

 	restore_cmap() (ginga.ImageView.ImageViewBase method)

 	restore_contrast() (ginga.ImageView.ImageViewBase method)

 	rgbmap_cb() (ginga.ImageView.ImageViewBase method)

 	roll_objects() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	rotate() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.ImageView.ImageViewBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	rotate_by() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	rotate_by_deg() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	rotate_deg() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	rotate_pt() (ginga.canvas.coordmap.CartesianMapper method)

 	(ginga.canvas.coordmap.DataMapper method)

 	(ginga.canvas.coordmap.NativeMapper method)

 	(ginga.canvas.coordmap.OffsetMapper method)

 	(ginga.canvas.coordmap.WCSMapper method)

 	(ginga.canvas.coordmap.WindowMapper method)

 	rotation_change_cb() (ginga.ImageView.ImageViewBase method)

S

 	
 	save_plain_image_as_file() (ginga.ImageView.ImageViewBase method)

 	save_profile() (ginga.ImageView.ImageViewBase method)

 	save_rgb_image_as_file() (ginga.ImageView.ImageViewBase method)

 	scale_and_shift_cmap() (ginga.ImageView.ImageViewBase method)

 	scale_by() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	scale_by_factors() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	scale_cb() (ginga.ImageView.ImageViewBase method)

 	scale_font() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	scale_to() (ginga.ImageView.ImageViewBase method)

 	select_add() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	select_contains() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	select_contains_pt() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

 	select_items_at() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	select_remove() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	set_attr_all() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	set_autocenter() (ginga.ImageView.ImageViewBase method)

 	set_autocut_params() (ginga.ImageView.ImageViewBase method)

 	set_autocuts() (ginga.ImageView.ImageViewBase method)

 	set_bg() (ginga.ImageView.ImageViewBase method)

 	set_calg() (ginga.ImageView.ImageViewBase method)

 	set_canvas() (ginga.ImageView.ImageViewBase method)

 	set_cmap() (ginga.ImageView.ImageViewBase method)

 	set_color_algorithm() (ginga.ImageView.ImageViewBase method)

 	set_color_map() (ginga.ImageView.ImageViewBase method)

 	set_coordmap() (ginga.ImageView.ImageViewBase method)

 	set_cursor() (ginga.ImageView.ImageViewBase method)

 	set_data() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.ImageView.ImageViewBase method)

 	set_data_points() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	set_desired_size() (ginga.ImageView.ImageViewBase method)

 	set_draw_mode() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	set_drawcolor() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	set_drawtype() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	
 	set_enter_focus() (ginga.ImageView.ImageViewBase method)

 	set_fg() (ginga.ImageView.ImageViewBase method)

 	set_image() (ginga.ImageView.ImageViewBase method)

 	set_imap() (ginga.ImageView.ImageViewBase method)

 	set_intensity_map() (ginga.ImageView.ImageViewBase method)

 	set_limits() (ginga.ImageView.ImageViewBase method)

 	set_name() (ginga.ImageView.ImageViewBase method)

 	set_onscreen_message() (ginga.ImageView.ImageViewBase method)

 	set_pan() (ginga.ImageView.ImageViewBase method)

 	set_point_by_index() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	set_redraw_lag() (ginga.ImageView.ImageViewBase method)

 	set_refresh_rate() (ginga.ImageView.ImageViewBase method)

 	set_rgbmap() (ginga.ImageView.ImageViewBase method)

 	set_scale_base_xy() (ginga.ImageView.ImageViewBase method)

 	set_scale_limits() (ginga.ImageView.ImageViewBase method)

 	set_surface() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	set_window_size() (ginga.ImageView.ImageViewBase method)

 	set_zoom_algorithm() (ginga.ImageView.ImageViewBase method)

 	set_zoomrate() (ginga.ImageView.ImageViewBase method)

 	setAttrAll() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	setSurface() (ginga.canvas.DrawingMixin.DrawingMixin method)

 	setup_edit() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	shift_cmap() (ginga.ImageView.ImageViewBase method)

 	show_color_bar() (ginga.ImageView.ImageViewBase method)

 	show_focus_indicator() (ginga.ImageView.ImageViewBase method)

 	show_mode_indicator() (ginga.ImageView.ImageViewBase method)

 	show_pan_mark() (ginga.ImageView.ImageViewBase method)

 	simple_wcs() (in module ginga.util.wcs)

 	start_refresh() (ginga.ImageView.ImageViewBase method)

 	stop_refresh() (ginga.ImageView.ImageViewBase method)

 	subcanvas_updated_cb() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	swap_objects() (ginga.canvas.CompoundMixin.CompoundMixin method)

 	swapxy() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	switch_cursor() (ginga.ImageView.ImageViewBase method)

 	sync_state() (ginga.canvas.CanvasObject.CanvasObjectBase method)

T

 	
 	take_focus() (ginga.ImageView.ImageViewBase method)

 	to_data() (ginga.canvas.coordmap.CartesianMapper method)

 	(ginga.canvas.coordmap.DataMapper method)

 	(ginga.canvas.coordmap.NativeMapper method)

 	(ginga.canvas.coordmap.OffsetMapper method)

 	(ginga.canvas.coordmap.WCSMapper method)

 	(ginga.canvas.coordmap.WindowMapper method)

 	
 	trans_coeff() (in module ginga.util.wcs)

 	transform() (ginga.ImageView.ImageViewBase method)

 	transform_cb() (ginga.ImageView.ImageViewBase method)

U

 	
 	update_canvas() (ginga.canvas.CanvasMixin.CanvasMixin method)

 	update_image() (ginga.ImageView.ImageViewBase method)

 	
 	use_coordmap() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	(ginga.canvas.CompoundMixin.CompoundMixin method)

V

 	
 	vname (ginga.ImageView.ImageViewBase attribute)

 	
 	vtypes (ginga.ImageView.ImageViewBase attribute)

W

 	
 	WCSMapper (class in ginga.canvas.coordmap)

 	window_has_origin_upper() (ginga.ImageView.ImageViewBase method)

 	window_to_offset() (ginga.ImageView.ImageViewBase method)

 	
 	WindowMapper (class in ginga.canvas.coordmap)

 	within_line() (ginga.canvas.CanvasObject.CanvasObjectBase method)

 	within_radius() (ginga.canvas.CanvasObject.CanvasObjectBase method)

Z

 	
 	zoom_fit() (ginga.ImageView.ImageViewBase method)

 	zoom_in() (ginga.ImageView.ImageViewBase method)

 	
 	zoom_out() (ginga.ImageView.ImageViewBase method)

 	zoom_to() (ginga.ImageView.ImageViewBase method)

 	zoomalg_change_cb() (ginga.ImageView.ImageViewBase method)

 Ginga is licensed under a 3-clause BSD style license:

Copyright (c) 2011-2018, Eric R. Jeschke

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

	Neither the name of the Eric R. Jeschke nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 _images/barebonesviewer_qt.png
Open File Quit

_images/blink-plugin.png
IMAGE: Blink

Blink

Interval:[1,0 || start Blink || Stop Blink |

Max: 30.0 Min:0.25
Mode: blink images in channel

| Close || Help |

_images/SAMP-plugin.png
Instructions.
SAMP hub/client control.

SAMP

& start hub
(& Connect client

_images/autocuts-prefs.png
Auto Cuts
Auto Method: [7scale

contrast: [o 55
num_points:

num_per_row:

_images/channel_selector.png
Zoom: 1.13x
Cut Low: 1311

Cut High: 2358

Auto Levels Cut Levels

Cut New: override IR 152 1591 1801 1871 1941 2011 2081 2151 2221

Zoom New:on
Center New: off

MXZ APl 4> A ¥ PO HH 8D 58 MDiwa &

_images/channels.png

_images/cdist-prefs.png
Color Distribution

ist Defaults

_images/changehistory-plugin.png
Dialogs | Thumbs | Contents | Errors [History

Timestamp (UTC) ~ Description
< Image
< jb5501fn_blv_tmplSCl.1]
2016-01-217 20:14:11Z _ SNR* and SBR keyword.
2016-01-21Z 20:15:01Z 44.1130180359 subtra
< jb6e07dma_blv_tmp(SCl,1]
2016-01-217 20:16:13Z SNR# and SBR keyword...
~ Image3
¥ jc7101jbq_raw(sC1,1]
2016-01-217 20:17:202 2202.0 subtracted from.

Selected History

Channel: Image

Image: jb5s01fnq_blv_tmp(SCI,1]
Timestamp: 2016-01-217 20:14:117

Description:-

SNR* and SBR keywords updated in
jb5501fnq_blv_tmp[SCl,1]; x=691.706192688,
y=946.590612293, pts=[(694.6543408360128,

$49.8440514469455], 1694.6543408360126.
949.8440514469453], [695.1543408360128,
947.8440514469453], [695.1543408360128,
947.8440514469453], [695.6543408360128,
946.8440514469453], [696.1543408360128,
945.3440514469453], [696.1543408360128,
944.8440514469453], [696.1543408360128,

944.8440514469453], [696.1543408360128,
|aaa'Raans1aasaasa 5as 152240

_images/class_structure_astroimage.png
Key

[Base class

Baselmage [] Normal class

Astrolmage

IOHandler|
(FITS)

_images/class_structure_drawingcanvas.png
‘dMixin .
DrawingCanvas ‘ .
IxXin

‘bjeCt

_static/up-pressed.png

_static/up.png

_images/class_structure_viewer.png
Key

] Base class

[] Widget specific class

ImageView

CanvasView, etc.

DrawingCanvas

Bindings

BindingMapper

nav.xhtml

 Table of Contents

 		
 Ginga: Image Viewer and Toolkit

 		
 Detailed Installation Instructions for Ginga

 		
 Dependences

 		
 REQUIRED

 		
 BACKENDS (one or more)

 		
 RECOMMENDED

 		
 Notes on Supported Widget Sets

 		
 Qt/PySide

 		
 Gtk

 		
 Tk

 		
 Matplotlib

 		
 HTML5 web browser

 		
 Installation from Source

 		
 Platform Specific Instructions

 		
 Linux

 		
 Mac

 		
 Windows

 		
 What’s New in Ginga?

 		
 Ver 2.7.1 (2018-07-09)

 		
 Ver 2.7.0 (2018-02-02)

 		
 Ver 2.6.6 (2017-11-02)

 		
 Ver 2.6.5 (2017-07-31)

 		
 Ver 2.6.4 (2017-06-07)

 		
 Ver 2.6.3 (2017-03-30)

 		
 Ver 2.6.2 (2017-02-16)

 		
 Ver 2.6.1 (2016-12-22)

 		
 Ver 2.6.0 (2016-11-16)

 		
 Ver 2.2.20160505170200

 		
 Ver 2.2.20150203025858

 		
 Ver 2.1.20141203011503

 		
 Ver 2.0.20140905210415

 		
 Ver 2.0.20140811184717

 		
 Ver 2.0.20140626204441

 		
 Ver 2.0.20140520035237

 		
 Ver 2.0.20140417032430

 		
 Ver 2.0.20140412025038

 		
 Ver 2.0.20140114070809

 		
 Ver 2.0.20131218034517

 		
 Ver 2.0.20131201230846

 		
 Ver 2.0.20131030190529

 		
 Ver 1.5-20131022230350

 		
 Ver 1.5-20130923184124

 		
 Efficiency improvements

 		
 Ver 1.4.20130718005402

 		
 New Agg backend

 		
 New Tk backend

 		
 AutoCuts

 		
 Etc

 		
 Ginga Quick Reference

 		
 Main image window

 		
 Mode control commands

 		
 Panning and zooming commands

 		
 Cut levels and colormap commands

 		
 Transform commands

 		
 Pan mode

 		
 Freepan mode

 		
 Dist mode

 		
 Cuts mode

 		
 Contrast mode

 		
 Rotate mode

 		
 Cmap mode

 		
 Autozoom setting

 		
 Autocenter setting

 		
 Autocuts setting

 		
 Reference Viewer Only

 		
 The Ginga FAQ

 		
 Platforms

 		
 Does Ginga run on Mac/Windows/Linux/XYZ?

 		
 Does Ginga work with Python 3?

 		
 Toolkits

 		
 What GUI toolkit does Ginga use?

 		
 Can Ginga work with PyQt5?

 		
 Can Ginga work with Gtk3?

 		
 Control Bindings

 		
 Can I get DS9-like user interface mappings?

 		
 Can I customize the user interface mappings?

 		
 Where can I find a quick reference of the bindings?

 		
 Miscellaneous

 		
 Does Ginga work with SAMP?

 		
 Is it possible to control Ginga remotely?

 		
 When are you going to add the XYZ feature that DS9 has?

 		
 Can I get Ginga reference viewer to save its size and position?

 		
 World Coordinate System

 		
 What library are you using for WCS?

 		
 How easy is it for Ginga to support a custom WCS?

 		
 I/O and File Formats

 		
 What library are you using for FITS I/O?

 		
 How easy is it for Ginga to support a new file formats besides FITS?

 		
 Problems Displaying Images

 		
 The Ginga Viewer and Toolkit Manual

 		
 Introduction

 		
 About

 		
 Features

 		
 Core Concepts

 		
 Workspaces

 		
 Channels

 		
 Plugins

 		
 Modes

 		
 General Operation

 		
 Keyboard and mouse operations

 		
 Loading a FITS image file

 		
 Zooming and panning

 		
 How Ginga maps an image to color

 		
 Transforming the image view

 		
 Ginga Canvas Graphics

 		
 Canvases and Canvas Objects

 		
 Viewers

 		
 Plugins

 		
 Global plugins

 		
 Local plugins

 		
 Customizing Ginga

 		
 Configuration Options

 		
 Saving the workspace layout between sessions

 		
 Rebinding Controls

 		
 Customizing the Reference Viewer During Initialization

 		
 Workspace configuration

 		
 Auto-Start Plugins

 		
 Adding Plugins

 		
 Disabling Plugins

 		
 Making a Custom Startup Script

 		
 Developing with Ginga

 		
 Writing plugins for the reference viewer

 		
 Using the Basic Ginga Viewer Object in Python Programs

 		
 Using the basic rendering class in new programs

 		
 Ginga Internals

 		
 Introduction

 		
 Graphics on Ginga

 		
 Miscellaneous Topics

 		
 Optimizing Ginga’s Performance

 		
 OpenCL Acceleration

 		
 OpenCv Acceleration

 		
 numexpr Acceleration

 		
 Reference/API

 		
 ginga.canvas.CanvasMixin Module

 		
 Classes

 		
 ginga.canvas.CanvasObject Module

 		
 Functions

 		
 Classes

 		
 ginga.canvas.CompoundMixin Module

 		
 Classes

 		
 ginga.canvas.coordmap Module

 		
 Classes

 		
 ginga.canvas.DrawingMixin Module

 		
 Classes

 		
 ginga.canvas.types.layer Module

 		
 Classes

 		
 Class Inheritance Diagram

 		
 ginga.ImageView Module

 		
 Classes

 		
 ginga.rv.main Module

 		
 Classes

 		
 ginga.util.wcsmod Package

 		
 ginga.util.wcs Module

 		
 Functions

_images/colormappicker.png
cubehelix
cubehelix_r
Dark2
Dark2_r
flag
flag_r
I gist_carth
| gist_earth r
T st oy
N gist_gray_r
I st heat
e gist heat r
TS W e
HE I W st
- T T gistrainbow
T R gistrainbow s
1 T st stern
| ~ giststems
| gist_yarg
D st yarg
I e
- o
e A oot
I nplo
000 g
HE 0 gnplotr
W oy
| gray.r
I D oo
R o
N [
I Grecns
[Greys
D oy

_images/compose-alpha.png
IMAGE: Compose

Compositing

Compose Type:| Alpha

New Image Insert fi

Preview

layer0:
layerl:

Save Image As
701 990.4 1280 1569 1859 2148 2437 2727 2947 Save to Channel

Image Oper: Close | Help

_images/cmap-prefs.png
Color Mapping

L —

_images/colorbar-plugin.png
‘252.2 314.5 _ 01.1 563.4 625.6 687.8 740.4 790.1 839.9 889N 939.5
8 Q4 4

_images/crosshair-plugin.png
IMAGE: Crosshair

Crosshair
Format:| coords

Close || Help

_images/cursor-plugin.png
Image : Operation

_images/compose-rgb.png
Image IMAGE: Compose

Compositing
Compose Type: RGB -

New Image Insert from Channel

Preview

Save Image As

9523 29.63 49.73 _69.83 89.94 110 _ 130.1 150.2 170.4 190.5 209.8 224.8 Save to Channel
X: 267.444 Y: 8576 Value: None

IMAGE!
- Close | Hel
Image Operation Compose P

_images/contents-plugin.png
Dialogs Thumbs Contents Errors

Name * Object

- Vaw
VGWAQ0466652[PRIMARY, 1] Regionselection
VGWAO00460883[PRIMARY,1] Focusing
VGWAO0460869[PRIMARY,1] Focusing

* SPCAM

Modified

None
None
None

SUPAO1118789[PRIMARY,1] - M27 None
SUPAO1118788[PRIMARY,1] ~ M27 2009-08-22 09:39:06.270 None
SUPAO1118787[PRIMARY,1] - M27 2009-08-22 09:39:06.270 None.
SUPAQ1118781[PRIMARY,1] ~ M27 2009-08-22 09:3:06.270 None

SUPAO1118780[PRIMARY,1] M27
SUPAO1118779[PRIMARY,1] M27

None
None

SUPA01118778[PRIMARY,1] M27 None
* MOIRCS

MCSA00218063[PRIMARY, 1] MS_TARGET_CENTER 2014-12-16 09:11:18.294 None

MCSA00186490[PRIMARY,1] DOMEFLAT 2011-09-27 16:00:24.154 None

MCSA00186489[PRIMARY, 1] DOMEFLAT 2011-0927 16:00:24.154 None

MCSA00185975[PRIMARY,1] 4C23.56MOS 2011-09-27 08:43:04.682 None

MCSA00185927[PRIMARY,1] HIP101748 2011-09-27 07:10:26.265 None
* HSC

HSCA08092025[PRIMARY,1] SSP-Wide 2016-08-01 06:46:47.656 None

HSCA08092024[PRIMARY,1] SSP-Wide 2016-08-01 06:46:47.656 None

HSCA08092023[PRIMARY,1] SSP-Wide None

Display Move copy Remove

_images/cuts-plugin.png
Dialogs | Thumbs | Contents | Errors,

i ok e 4 - IMAGE: Cuts
(HRER 8

‘* '% : 95 t ‘l! § % Draw (or redraw) a line with the right mouse
i e i P button. Click or drag left button to reposition line.

11
FE

' MH ! li[A i 200

100

0

100
0 100 200 300 400 500 600 700 800

atst :|[Delete Delete All | |free

_images/example2_screenshot.png

_images/gingadefault.png
File Channel Wo
Info Header Zoom

Synopsis Command
Name: HSCA08092019[PRIM,
Object: SSP-Wide
X:1323.470
Y:2055.355
Value: 1700
a:14:56:00.232
6:+42:41:04.483
Equinox: 2000.0
Dimensions: 2144x4241
Min: 1141

Aav-20494

Zoom: 1.13x
Cut Low: 1311

Cut High: 2358

Auto Levels Cut Levels
Cut New: override
Zoom New:on

Center New: off
B XZ &L

ace Plugins Help

Workspace Tabs :| MDI

Image HSC HST

- Operatlon

1661

= 4#4' L HM® 4+ DN

4 vV € » + -

1731 1801 1871

" a m R W

1941

49

2011

*=

2051

2151

2221

2291

Dialogs Thumbs Contents Errors

HSCA08092020[PRIMARY, 1] ibc307qyq_FIt[SCI,1]

SUPA01118793[PRIMARY, 1]

SUPA01118798[PRIMARY,1] SUPA01118799[PRIMARY,1]

SUPAO01118805[PRIMARY, 1]

Clear

@ Auto scroll

_images/histogram-plugin.png
IMAGE: Histogram

» Instructions

Cut Low: ‘97

Cut High:(1023.03175468

| cut Levels |

Auto Levels

[Log Histogram & Plot By Cuts

NumBins: \2048

Full Image

@ Move O Draw O Edit

Close

_images/info-plugin.png
Synopsis Command

Name: SUPAO1118784[PRIMARY,1]
Object: M27
X:504.773
Y:1494.557
Value: 488
a:19:59:08.977
6:422:32:17.112
Equinox: 2000.0
Dimensions: 2272x4273
Min: 137
Max: 65535

Zoom: 1/3.57x
Cut Low: 141 |

Cut High: 1086 |
| Auto Levels | Cut Levels

Cut New: override
Zoom New:on
Center New: of f

_images/global_plugin1.png
[info | Header | zoom |

647.590
Value: 479.0
: 19:58:47.959
5:+22:46:55.43
Equinox: 2000.0
Dimensions: 2272x4273
Min: 170.0
Max: 65535.0
Zoom: 1/2.21x
Cut Low: 244.95

Cut High: 1046.85

Auto Levels

Cut New: off
Zoom New: on

Il

Preferences

o

_images/header-plugin.png
Info | Header | Zoom

Keyword Value
SIMPLE True
BITPIX 16
NAXIS 2
NAXIS1 2272
NAXIS2 4273
EXTEND False
BZERO 32768.0
BSCALE 1.0
BUNIT ADU
BLANK -32768
DATE-OBS 2009-08-22
uT 09:34:25.911
UT-STR 09:34:25.911
UT-END 09:35:55.010
HST 23:34:25.911
HST-STR 23:34:25.911
HST-END 23:35:55.010
LST 21:15:48.968
LST-STR 21:15:48.968
LST-END 21:17:18.311
MJD 55065.398914
TIMESYS UTC
MJD-STR 55065.398914
MJD-END 55065.399945
ZD-STR 17.858
ZD-END 18.2
SECZ-STR 1.051
SECZ-END 1.053
AIRMASS 1.0526
AZIMUTH 282.679
ALTITUDE 72.142
PROP-ID 099005
OBSERVER Jeschke, Inagaki, Streeper,
FRAMEID SUPA01118760
EXP-ID SUPE01118760
DATASET DS000
OBS-MOD IMAG_N_VGW
OBS-ALOC Observation
DATA-TYP OBJECT
OBJECT M27
RA

O Sortable

19-59-40 1AR

_images/local_plugin1.png
s 2 =
ot FWHM X: 3.00 Y:2.78 2
[datex e
P
9
40000 Pl 8
g
30000 e
=
E
20000 E |
10000
% 20

Instructions

Left-click to place region. Left-drag to

position region. Redraw region with the right
mouse button.
Pick
Zoom: 4.00x. ‘Contour Zoom: 7.00x
Object_X: 1329.847 Object_Y: 1941.726
RA: 19:58:35.021 DEC: +22:47:54.57
Equinox: 2000.0 Background: 530.000
Sky Level: 596.500 Brightness: 44417.911
FWHM X: 3.045 FWHMY: 2.816
FWHM: 2.933 Star Size: 0.592
Sample Area: 124x146 [Default Region |

Done

Report | Settings | Controls

| close |

_images/mode_indicator.png
Zoom: 1/3.72x
Cut Low: 190

Cut High: 1000
Auto Levels Cut Levels CaredEn o : $ bt J—

Cut New: override s i : - e . .
Zoom New: on .5 7395 789.4 839.4 889.3 939

Center New: off

. Image : Operation
MXE S8/l «> 4 W @@@@EDM 2 B

_images/lineprofile-plugin.png
IMAGE: LineProfile

intensity (JY/BEAM)

°

Xy
<

VELO-HEL (km/s)
controls
NAXIS1 () NAXIS2 & NAXIS3
Mark controt
mark6 v| New Mark Type: [potygon
Pan to mark
Delete Delete All

= Move

_images/multidim-plugin.png
info | Header | Zoom

Synopsis | Command

P Instructions
HDU
Num HDUS: 1
OPRIMARY (1) PrimaryHDU_float32

NAXIS (data cubes)

mtervali (010 ||

slice: Slice

Movie
Please install ‘mencoder’ to save as movie

Image.

Image

][operaton |

_images/nested_workspaces.png
Workspace Tabs :

Image ws1
Workspace MDI

MDI

:) MDI

4 vV <« » +

4 vV <« » +

Workspace | Grid

ws2 B 1

(MDI & ¥ <« » + -—

_images/multidim-plugin-table.png
Synopsiz| Command | WAGE: wuliom |

P Instructions
HDU
Num HDUSs: 6

(4) BinTableHDU [1K, 1E,

NAXIS (data cubes)
NAXIS1: 0

NAXIS2: 0

Image

row v |4 x fy peakvalue
None pixels pixels pixels dn

0001 458852 207.0 6.0 207 6 57.4831
0002 458853 1513.0 6.0 1513 6 181.356
0003 458854 1677.0 120 1677 12 3585.14
0004 458855 1800.0 6.0 1800 6 27.0447
0005 458856 761.0 14.0 761 14 36.3253
0006 458857 73.0 29.0 73 29 57.0386
0007 458858 1625.0 34.0 1625 34 9177.11
0008 458859 1924.0 330 1924 33 86.2817
0009 458860 1554.0 36.0 1554 36 25.873
0010 458861 242.0 a7.0 242 a7 103.865
0011 458862 18010 49.0 1801 49 33575
0012 458863 1399.0 52.0 1399 52 45538
0013 458864 1016.0 52.0 1016 52 28.1596
0014 458865 161.0 710 161 7 54.7149
0015 458866 870.0 64.0 870 64 27.1998
0016 458867 13810 68.0 1381 68 84.89
0017 458868 1466.0 72.0 1466 72 136.265
0018 458869 1488.0 65.0 1488 65 37.2301
0019 458870 1697.0 74.0 1697 74 45.0263
0020 458871 1509.0 710 1509 7 39.0238
0021 458872 307.0 75.0 307 75 318.006
0022 458873 626.0 79.0 626 79 229192
0023 458874 1248.0 77.0 1248 77 52.6101
0024 458875 486.0 78.0 a86 78 35.2239
0025 458876 1332.0 79.0 1332 79 24.5045
0026 458877 178.0 85.0 178 85 100.501
0027 458878 1490.0 83.0 1490 83 24.4113

_images/pan-plugin.png

_images/pan-prefs.png
Panning

Center Image

[J Mark Center

_images/newimages-prefs.png
New Images

CUtNew: | override s
Zoom New: | off S
Center New Follow New

Raise New Create thumbnail

_images/overlays-plugin.png
IMAGE: Overlays |

Limits

Opacity: 0.50

Hi color:| palevioletred

Hi limit: ‘4000

Lo color: plye

Lo limit: ‘200

| Redo |

_images/pick-contour.png
IMAGE: Pick

26

25

24

23

22

21

20

5
£ £ L L& L L

Image | Contour FWHM Radial Cuts

_images/pick-candidates.png
IMAGE: Pick

» Instructions

Image Contour FWHM Radial
Pick
@ Show Candidates
Radius: 105
Threshold: None
Min FWHM: 202
Max FWHM: 50.0(50
Ellipticity: 0.5
Edge: 0.01
Maxside: 1024[1024

Coordinate Base: 0.0/0.0

Contour Interpolation: bilinear pjlinear
Redo Pick

Readout Settings Controls Report

_images/pick-contour-no-candidate.png
25

24

21

20p

1080
s

:Rﬂ

>0

gt 19 20

o
o © © ©

Image Contour FWHM Radial

21

B

23

24

_images/pick-cuts.png
IMAGE: Pick

1800

d o
E

)
Line Index

Image Contour FWHM Radial | Cuts

_images/pick-fwhm.png
IMAGE: Pick

Image Contour FWHM Radial Cuts

_images/pick-controls.png
Pick

| Bgaut | Delta bg:-200.0|-200

| Skycut | Deltasky: 0.0/0.0

| Bright cut | Delta bright: 500.0 ‘500‘

Readout Settings ‘ Controls‘ Report

_images/pick-cutout.png
IMAGE: Pick

L]

Image Contour FWHM Radial Cuts

_images/pick-radial.png
Image Contour FWHM Radial Cuts

_images/pick-readout.png
Pick

Zoom: 8.00x
Object_X 1312.405 Object_Y 639.037
RA: 19:59:05.460 DEC: +22:29:18.59
Equinox: 2000.0 Background: 417.000
Sky Level: 477.850 Brightness: 1114.410
FWHM X:2.946 FWHM Y:2.901
FWHM: 2.924 Star Size: 0.591 |
Sample Area: 21x23 | Default Region || Pan to pick |

& Quick Mode & From Peak

Done

Stop 100%

Readout Settings Controls Report

_images/pick-move-draw-edit.png
‘KEEQDU[‘)ELLI"g) LUTHLTOL . REPOUIL
@® Move O Draw O Edit

| Close |

_images/pick-no-candidate.png
IMAGE: Pick

» Instructions

Image | Contour FWHM Radial
Pick

Zoom: 5.00x
Object_X 1332.977 Object_Y 2079.102
RA:20:00:37.753 DEC: +22:48:10.18
Equinox: 2000.0 Backgroun
Sky Level:
FWHM X:
FWHM: Failed
Sample Area: 42x44 Default Region

Pan to pick

No object matches selection criteria

Stop 100%

Readout Settings Controls Report

BENO61.3 1037 1112

® Move O Draw O Edit

_images/pick-report.png
Pick

RA DEC Equinox X Y
20:00:37.... +22:48:04.32 2000.0 1318.43678... 2050.1588"
20:00:36.... +22:48:20.03 2000.0 1398.92996... 2127.7651
20:00:35.... +22:47:53.63 2000.0 1509.76160... 1996.9219°
20:00:37.... +22:48:19.74 2000.0 1343.41759... 2126.4362(

| Add Pick | @ Record Picks automatically | Clear Log |

| Save as FITS table | File:|pick_log.Fits

Readout Settings Controls Report

_images/pick-sc1.png
174.4

Image :

2434 311.6

Operation

380.6

449.6

518.6

586.8

655.8

724.8

793.8

862

931

IMAGE: Pick

Image Contour FWHM Radial Cuts
Pick

Zoom: 8.00x
Object_X 1334.312 Object_Y571.332
RA:19:59:05.142 DEC: +22:29:04.91
Equinox: 2000.0 Background: 410.000
Sky Level: 470.500 Brightness: 11120.381
FWHM X:2.940 FWHM Y:2.950
FWHM: 2.945 Star Size: 0.595

Sample Area: 51x42 Default Region || Pan to pick
[Quick Mode & From Peak

Done

Stop 100%
Readout Settings Controls Report

® Move O Draw O Edit

Close || Help

_images/plugin_log.png
Dialogs Thumbs Contents Errors Log

2017-04-10 17:39:32,341 | D | ImageView.py:1142 (redraw_now) | widget 'channel:Image’ redraw (\
2017-04-10 17:39:32,341 | D | ImageView.py:1439 (_calc_bg_dimensions) | approx area covered is (
2017-04-10 17:39:32,341 | D | ImageView.py:1508 (apply_transforms) | reshape time 0.000 sec
2017-04-10 17:39:32,341 | D | ImageView.py:1527 (apply_transforms) | rotate time 0.000 sec, total
2017-04-10 17:39:32,341 | D | ImageView.py:1536 (apply_transforms) | ctr=169,13 off=180,180 ds
2017-04-10 17:39:32,341 | D | ImageView.py:1540 (apply_transforms) | win=339,27 coverage=349
2017-04-10 17:39:32,342 | D | ImageView.py:1390 (get_rgb_object) | times: total=0.0005
2017-04-10 17:39:32,342 | D | ImageViewQt.py:172 (render_image) | redraw pixmap=<PyQt5.QtGu

2017-04-10 17:39:32,342 | D | ImageViewQt.py:175 (render_image) | drawing to pixmap
2017-04-10 17:39:32,342 | D | ImageViewQt.py:148 (_render_offscreen) | data shape is 360x360x4
2017-04-10 17:39:32,348 | D | ImageView.py:1197 (check_cursor_location) | cursor location change
2017-04-10 17:39:32,348 | D | ImageViewQt.py:253 (update_image) | updating window from pixmaj
2017-04-10 17:39:32,348 | D | ImageView.py:1142 (redraw_now) | widget 'colorbar' redraw (whence
2017-04-10 17:39:32,370 | D | wesmod.py:778 (pixtocoords) | ra, dec = 300.023517, 22.760580
2017-04-10 17:39:32,379 | D | ImageView.py:1439 (_calc_bg_dimensions) | approx area covered is (
2017-04-10 17:39:32,381 | D | AutoCuts.py:73 (cut_levels) | loval=148.00 hival=1299.31
2017-04-10 17:39:32,382 | D | image.py:453 (draw_image) | shape of index is (434, 231)
2017-04-10 17:39:32,387 | D | ImageView.py:1508 (apply_transforms) | reshape time 0.000 sec
2017-04-10 17:39:32,388 | D | ImageView.py:1527 (apply_transforms) | rotate time 0.000 sec, total
2017-04-10 17:39:32,388 | D | ImageView.py:1536 (apply_transforms) | ctr=168,217 off=285,285 d
2017-04-10 17:39:32,388 | D | ImageView.py:1540 (apply_transforms) | win=337,435 coverage=45
2017-04-10 17:39:32,388 | D | ImageView.py:1390 (get_rgb_object) | times: total=0.0089
2017-04-10 17:39:32,388 | D | ImageViewQt.py:172 (render_image) | redraw pixmap=<PyQt5.QtGu
2017-04-10 17:39:32,388 | D | ImageViewQt.py:175 (render_image) | drawing to pixmap
2017-04-10 17:39:32,388 | D | ImageViewQt.py:148 (_render_offscreen) | data shape is 570x570x4
2017-04-10 17:39:32,390 | D | ImageViewQt.py:253 (update_image) | updating window from pixmaj
2017-04-10 17:39:32,391 | D | ImageView.py:1142 (redraw_now) | widget '‘panimage’ redraw (when
2017-04-10 17:39:40,981 | | | Log.py:113 (set_loglevel_cb) | GUI log level changed to 'Info’
2017-04-10 17:39:42,261 | | | Log.py:113 (set_loglevel_cb) | GUI log level changed to 'Debug’)
2017-04-10 17:39:43,660 | | | Log.py:113 (set_loglevel_cb) | GUI log level changed to 'Info’ §
Info /| 1000

@ Auto scroll Clear

Close || Help

_images/ruler_plugin.png
Dialogs | Thumbs Contents Errors

IMAGE: Ruler

Instructions

Draw (or redraw) a line with the right
mouse button. Display the Zoom tab to
precisely see detail.

Ruler

Units: | arcmin

_images/pixtable-plugin.png
Workspace Grid :/MDI 4 ¥ <« » + =— Dialogs Thumbs Contents Errors
IMAGE: PixTable

Pixel Values

5x5 :| mark1:|| Delete | Delete All

& Pan to mark
Font size: 19

2.1 779.7 856.5 933.2 1007

Image Operal Close || Help

_images/plottable-plugin.png
IMAGE: PlotTable

P Instructions

I Show Marker

_images/thumbs-plugin.png
Dialogs | Thumbs | contents | Help | Errors | Log | Debug
- A

SUPA01118769

SUPA01118777

SUPA01118772 SUPA01118776

Auto scroll

_images/transform-prefs.png
Transform
O Flipx [Flipy

Rotate: 0.00000000

Restore |

[swap XY

_images/saveimage_screenshot.png
Dialogs | Thumbs | Contents | Errors | History | Save File

P Instructions

0 sy

Pt imyrautputipatn) srowse
SUffx: (ginga)

_images/screenshot-plugin.png
Image Help IMAGE: Crosshair IMAGE: ScreenShot
Screenshot

414.8

Image : Operation |

_images/tvmark_screenshot.png
Dialogs | Thumbs | Contents | Errors | History.

IMAGE: TVMark

Mark: [cros:

Color: [cyan

size:

Width:

Shown | Selected | Outliers

No. v RA
350.992785... 0.01780326.
350.992087... 0.01773914.
350.992054... 0.01775734.
350.992878... 0.01776970.
350.992698... 0.01777408.
350.992029... 0.01779881.
350.992866... 0.01784994.
350.992030... 0.01786262.

350.995132... 0.01790204... 342.016707
0.01798075... 549.827738.
0.01817224... 512.393034.
0.01818466... 506.599443,
0.01823; 474.968186.
0.01865278... 1027.45998.
0.01974022... 401.019678.
0.008638 951.055946.
0.013606 1327.20322
0009518 383.512294.
0.016719 141286997
0.004239 1751.36837... 2

Shown: 6 Selected: 9
Load Coords | /] Use RADEC

Show Hide

image | 3 [Operation Close

_images/pick-settings.png
Pick

O Show Candidates
Draw type: rectangle rectangle

Radius: 10[5
Threshold: None
Min FWHM: 202
Max FWHM: 50.0|50
Ellipticity: 0.5
Edge: 0.01

Max side: 10241024

Coordinate Base: 0.0/0.0

Contour Interpolation: bilinear pjlinear

Redo Pick

Readout ‘ Settings ‘ Controls Report

_images/wstype_selector.png
© File Channel Workspace Plugins Help
Info Header Zoom Worksp4

DI 4 ¥ <« » + -—
Image HSC HST

E

_images/zoom-plugin.png
Info Header Zoom

Zoom Radius: ’e!

Zoom Amount:

Zoom: 3.00x
O Relative Zoom
Refresh Interval 20

Defaults

_images/wcsaxes-plugin.png
IMAGE: WCSAxes

General

Line color: | cyan

Aipha: |1

Line style: |solid
#RAlines: 1 ¢

4 DEC lines: (1

& Show label
Font size: [¢

Text offset: [_3 o

RAangle: (\one

DEC angte: [yone

_images/wcsmatch-plugin.png
WCS Match
Reference Channel: None

| Close || Help |

_static/comment-bright.png

_images/zoom-prefs.png
Zoom Alg:
Zoom Rate:
Stretch XY:
Stretch Factor:
Scale X:
scalev:

Scale Min:

Scale May

Zoom Defaults

Zoom

1.61421000

1.00000000

0.1743505733

il

0.1743505733

0.00001000
10000.00000000

I

_static/ajax-loader.gif

_images/tvmask_screenshot.png
image. Dialogs | Thumbs | Contents | Errors | History.

IMAGE: TVMask

Color:

Alpha: 5.5

No ~ | Filename
> green0.5
0001 MOS_8458_G395H testmaskl fits
pink.0.5

0002 MOS_8458 G395H_testmask2.fits
0003

_images/wcs-prefs.png
wes

WCS Coords:

WS DIl cenagesimal 1

_static/file.png

_static/ginga-128x128.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

